
Entropy-Learned Hashing
Constant Time Hashing with Controllable Uniformity
Brian Hentschel

Harvard University

Utku Sirin

Harvard University

Stratos Idreos

Harvard University

ABSTRACT
Hashing is a widely used technique for creating uniformly random

numbers from arbitrary data. This is required in a large range of

core data-driven operations including indexing, partitioning, filters,

and sketches. As such, hashing is a core component in numerous

systems including relational data systems, key-value stores, compil-

ers, and networks. Due to both the computational and data heavy

nature of hashing, it is a core systems bottleneck. For example,

a typical database query in the standard TPC-H benchmark may

spend 50% of its total cost in hash tables. Similarly, Google spends at

least 2% of its total computational cost on C++ hash tables, resulting

in a massive yearly cost footprint just from one hashing operation.

We propose a new hashing method, called Entropy-Learned

Hashing, which reduces the computational cost of hashing by up

to an order of magnitude. We look at hashing from a pseudoran-

domness point of view and the key question we ask is “how much

randomness is needed?” We show that state-of-the-art hash func-

tions do too much work to perform their core task: extracting

randomness from a data source to create random outputs. Entropy-

Learned Hashing 1) models and estimates the randomness (entropy)

of the input data, and then 2) creates data-specific hash functions

that use only the parts of the data that are needed to differenti-

ate the outputs. The resulting hash functions dramatically reduce

the amount of computation needed while we prove their output

is similarly uniform to that of traditional hash functions. We test

Entropy-Learned Hashing across diverse and core hashing opera-

tions such as hash tables, Bloom filters, and partitioning and we

demonstrate an increase in throughput in the order of 3.7x, 4.0x,

and 14x respectively compared to the best in-class hash functions

and implementations used at scale by Google and Meta.

CCS CONCEPTS
• Information systems→ Point lookups.

KEYWORDS
hashing, hash tables, systems, Bloom filters

ACM Reference Format:
Brian Hentschel, Utku Sirin, and Stratos Idreos. 2022. Entropy-Learned

Hashing Constant Time Hashing with Controllable Uniformity. In Proceed-
ings of the 2022 International Conference on Management of Data (SIGMOD

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00

https://doi.org/10.1145/3514221.3517894

Hashing

Hash tables
Filters
{x, y}

Partitioning

Networks
CompilersDatabases

Data structures &
algorithms

Applications

Genomics File systems

Load balancing Sketches

k

Figure 1: Hashing is a core element for numerous fundamen-
tal components across diverse classes of systems.

’22), June 12–17, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA,

15 pages. https://doi.org/10.1145/3514221.3517894

1 DATASET SPECIFIC HASHING
Hashing is Central to Computer Systems.Hashing is one of the
core concepts in computer science; data structures and algorithms

which use hashing exist in nearly every computer program. It’s

most ubiquitous use case, hash tables, is the standard way to access

individual data items. They are used both for fast access to hot

data in L1 cache across general purpose programs as well as for

accessing colder data that lies outside of cache either in memory

or on disk. For example, in relational database systems hash tables

are used for joins and group by operations. Beyond hash tables,

hashing is used in numerous other core parts of computer science

such as filters [11], data partitioning [62], load balancing [49], and

sketches [15, 30]. As a result of their many and important use cases,

hashing is not only central within relational databases [65, 66]

but acts as a core component of systems across compilers [3], file

systems [70, 76], gaming [33], genomics [50], and more. This effect

is depicted visually in Figure 1 where hashing is shown as the core

design element used to build numerous fundamental operations,

data structures, and algorithms (hash tables, filters, partitioning,

etc.) which in turn are are core components of diverse systems.

Hashing: Expensive at Scale. Because hashing is so ubiquitous,

it is a substantial portion of overall system cost. Google states that

2% of its total CPU usage and 5% of its total RAM at the company

is spent on just one hash-based data structure, hash tables, in just

one of the languages used, C++ [42]. Including other languages

and other hash-based operations, the total CPU and memory us-

age spent on hashing overall is surely much higher. Meta makes

similar statements, with developers stating that hash tables are

such "a ubiquitous tool in computer science that even incremental

improvements have large impact" [16]. Moving from large cloud in-

frastructure to particular applications, inside databases hash-based

joins and aggregations are amongst the most expensive and used

operators; as a concrete example they account for over 50% of

total time on 17 of the 22 queries on the TPC-H benchmark for

https://doi.org/10.1145/3514221.3517894
https://doi.org/10.1145/3514221.3517894

Hyrise [28, 69]. Another example can be seen in compilers, where

using hash tables in linking is a substantial part of program compila-

tion costs in Visual Studio [3]. In addition to hash tables, hash-based

filters are a core component of LSM-tree based key-value stores

[35] and can be a core computational bottleneck depending on the

workload [25, 78] and system tuning [22–24]. Similarly, hash-based

sketches act as a key computational bottleneck in network switches

[46]. These observations across diverse industries, systems and data

structures demonstrate that: despite numerous algorithmic and engi-
neering advances, hash-based operations are still expensive because
of the frequency and scale at which they are used.
Randomness vs. Performance. To start drilling in at both the

source of the problem and our solution we will next discuss the

core mechanisms and trade-offs in hashing. A core component of

all hash-based data structures and algorithms is the hash function

itself. Hash functions having two primary goals. The first is to

create uniformly random outputs for any number of input items.

That is, the output should be jointly uniform as well as marginally

uniform. The second is computational efficiency. While ideally both

goals would be optimally achievable, they are practically at odds

with each other. Thus a central question is how much randomness

is needed from the hash function for the operation at hand.

Guarantees Without Assumptions on the Data. To get perfor-

mance guarantees without assumptions on the data, all randomness

needs to come from the hash function. The main way to define this

property is by bounding the likelihood of collision for arbitrary

input items. In universal hashing [17], one guarantees that for any

two items 𝑥,𝑦 and family of functions 𝐻 : {0, 1}𝑛 → {0, 1}𝑚 , the

probability when choosing a random ℎ from 𝐻 of ℎ(𝑥) = ℎ(𝑦)
is ≤ 1

𝑚 . However, this is not enough randomness for many data

structures [55, 57], and so an expanded idea of hash randomness

is k-independence, which is that for any set of 𝑘 inputs 𝑥1, . . . , 𝑥𝑘 ,

and 𝑘 outputs 𝑦1, . . . , 𝑦𝑘 , the probability of 𝑃 (∩𝑖ℎ(𝑥𝑖) = 𝑦𝑖) =𝑚−𝑘

[75]. Given this model, it becomes possible to provide guarantees

with larger amounts of independence being more computationally

expensive but providing better performance guarantees [55, 57, 75].

Hashing in Practice. In practice, systems designers avoid expen-

sive k-independent hash functions and instead opt for hash func-

tions which lack formal robustness guarantees but are faster to

compute [7]. For instance, RocksDB uses xxHash [19], Google heav-

ily uses CityHash, Wyhash, and FarmHash [60, 61, 73], and C++

compilers such as g++ often choose MurmurHash [1, 6].

Choosing fast hash functions without robustness guarantees is

deemed 1) necessary because the computational performance of

hashing is too important, and 2) appropriate because empirically

the output of these fast hash functions appears as random as if it

was created from a perfectly random hash function [56, 63, 64]. This

phenomena is explained by pseudorandomness: If the data itself
is random enough, then hash functions with weaker guarantees in

terms of independence can be shown to perform in expectation

nearly identically to those that are fully random [18, 48]. In other

words, if we give up guaranteed randomness properties of hashing

on all datasets, then we can use a fast hash function. Most hash

functions perform well on most input data, and it takes careful

manipulation of the input data to craft scenarios where commonly

used hash functions fail.

Problem Definition. Having given the core concepts in state-of-

the-art hashing, we can now restate the problem more concretely.

Modern systems across diverse areas and industries utilize fast hash

functions but without any guarantees. However, these fast hash

functions are still not fast enough: they are still slow in that they

occupy a large portion of total cost in all those systems. In this

paper, we ask the following question:

“Is it possible to improve on the speed of the best modern hash
functions such that this brings significant end-to-end impact across
diverse widely used hash-based operations, while at the same time

maintaining and controlling their uniformity properties”?

The Solution: A Dataset-specific view of Hashing. Our core
intuition is to utilize the inherent randomness in the data in a

controlled way. That is, if we know how random the input data is,

we can use this observed randomness to create faster hash functions

by doing just enough computation and data movement to create a

sufficiently random output. Our key insight is that hash functions

in state-of-the-art solutions are “fixed” in that they always do the

same work regardless of the input. As such they end up doing more

work than needed if data sources are already random enough. Our

insight is to utilize such “surplus randomness” by adapting the hash

function to the data to minimize computational cost.

Our solution, called Entropy-Learned Hashing, creates a tailored
hash function for any given data source. It does so in two steps.

First, it learns the amount of randomness in the data and exactly

where this randomness appears. It does that by utilizing samples of

past data items and queries to estimate the amount of randomness

at specific subsets of bytes in data keys. In the second step, Entropy-

Learned Hashing utilizes this learned randomness to choose the

best subsets of bytes from the input keys that should be used in

the hash function. These subsets are chosen to have just enough

randomness for the task at hand. This results in hash functions

that do just enough computation, while preserving the (approxi-

mate) uniformity of the hash function’s output. For example, for a

dataset with keys of length 120 bytes, if a consistent subset of bytes

(e.g., bytes 3,7,9,12, and 15) is sufficiently random, Entropy-Learned

Hashing creates a hash function that will use only this subset of

bytes and as such it requires approximately only 1/24th the amount

of computation.

Constant-Time Hashing. How much time it takes to hash input

keys is now dependent on how random data is, but as we show in

our experiments, most datasets possess enough randomness that

just a small number of bytes of data are needed for hashing for

most tasks. This divorces hashing time from key size, as adding

more bytes to a key no longer adds to hash computation time. This

makes hashing a sub-linear operation for Entropy-Learned Hashing,

a large change with respect to traditional hash functions which

have linear computational cost with key size. As a result, Entropy-

Learned Hashing provides unbounded computational speedups as

key sizes grow.

Contributions. Our contributions are as follows:
• Entropy-Learned Hashing Formalization: We introduce a new way

to design hash functions that uses the entropy inside the data

source to reduce the computation required by hash functions.

• Optimization: We show how to choose which bytes to hash given

a collection of past queries and data items to analyze.

Identify Random Bytes

Analyze Randomness
Needed for Data Structures

Choose Bytes Needed for
Data Size and Structure

hashTable(size=10000)

[2] [4] [5]

[2] [4] [5] [7]

[2] [4] [5] [7]

Figure 2: The core steps in Entropy-Learned Hashing.

• Generalization: We show how the entropy of partial-key hashes

generalizes to data items outside the given sample of data.

• Concrete Trade-offs: We derive metric equations for three core use

cases of Entropy-Learned Hashing: hash tables, Bloom filters, and

data partitioning. This allows trading speed in hash computation

for small changes in other metrics of interest such as the number

of comparisons, FPR, and partition variance.

• Computational Gains: Comparing against state-of-the-art designs

and implementations, Google’s and Meta’s hash tables, we show

that Entropy-Learned Hashing provides higher throughput than

traditional hashing. While this improvement is unbounded with

respect to key size, for common medium-sized key types such as

URLs, we show this improvement is up to 3.7× for hash tables,

4.0× for Bloom filters, and up to 14× for data partitioning.

The paper is curated to be self-contained with the most critical

material and we also accompany it with an online appendix with

detailed proofs and numerous additional experiments [34].

2 OVERVIEW & MODELING
We now move on with a detailed description of Entropy-Learned

Hashing which will span the next three sections. In this section, we

start with a more detailed overview as well as laying out the basics

for notation and modeling which we use throughout the paper.

Overview. The goal of Entropy-Learned Hashing is to learn how

much randomness is needed and to produce a hash function which

does just enough work by controlling the input given to the hash

function. To achieve this goal, Entropy-Learned Hashing looks

for bytes which are highly random on input objects and passes

just enough of these bytes to create a highly random output. Stated

more formally, Entropy-Learned Hashing consists of creating a hash

function 𝐻 ′
which is the composition of 1) a partial-key function 𝐿

which maps a key 𝑥 to any subkey of 𝑥 (including potentially the

full key 𝑥), and 2) 𝐻 , a traditional hash function. Our focus is on

designing 𝐿, and 𝐻 can be any of the many well-engineered hash

functions for full-keys.

In order to create the partial-key function 𝐿, Entropy-Learned

Hashing uses three steps as shown in Figure 2. First, it analyzes

the data source 𝑥 and identifies which bytes are highly random,

and how much entropy can be expected from a choice of 𝐿 (Section

3). Second, it reasons about how 𝐿 affects data structure metrics

(Section 4). Finally, it uses runtime information, such as the size of

the desired Bloom filter or hash table or the number of partitions

in partitioning to choose which bytes to use in 𝐿 (Section 5).

Notation Definition (filter, hash table, or load balancer)

𝑋, 𝑥 key stored in the filter or hash table

𝐻,ℎ hash function for filter or hash table

𝑌, 𝑦 query key in filter or hash table

𝑚 size of filter (in bits), table (in slots), or # bins

𝑛 number of keys in filter or table

𝐾 set of keys

𝑆 |𝐿 multi-set of partial keys. Equal to (𝐾|𝐿, 𝑧)
𝐾|𝐿 Set of all partial keys.

𝑧 maps each key 𝑥 ∈ 𝐾|𝐿 to |𝐿−1 (𝑥) |. 𝑧𝑥 is used as short-

hand for 𝑧 (𝑥) throughout.
Notation Definition (hash table only)

𝛼 fill of hash table:
𝑛
𝑚

𝑃 ′ number of comparisons to find non-existing key

𝑃 average # of comparisons to retrieve a key in the dataset

Table 1: Notation used throughout the paper.

Notation. The notation for all variables used is given in Table 1.

Capital letters refer to either random variables or sets whereas

lower case variables refer to fixed quantities. The new notation is

because keys entered into 𝐻 are no longer unique. The set of keys

𝐾 contained in a hash-based data structure is broken down into

the multi-set 𝑆 |𝐿 = (𝐾 |𝐿, 𝑧). Here, 𝐾𝐿 is the set of all partial-keys

(outputs of 𝐿 applied to keys in 𝐾), and 𝑧 maps each key in 𝐾𝐿 to

the cardinality of its pre-image in 𝐾 . For instance, if 𝐿 takes the

first two characters of an input and 𝐾 = {dog, dot, cat, fan}, then
𝐾 |𝐿 = {"do", "ca", "fa"}, 𝑧 ("ca") = 1, and 𝑧 ("do") = 2.

Hash Function Model. We assume that 𝐻 is ideally random,

i.e. that for any distinct inputs 𝑥1, . . . , 𝑥𝑛 , output range [𝑚] =

{1, . . . ,𝑚}, and outputs 𝑎1, . . . , 𝑎𝑛 ∈ [𝑚], we have

P(𝐻 (𝑥1) = 𝑎1, . . . , 𝐻 (𝑥𝑛) = 𝑎𝑛) =
𝑛∏
𝑖=1

P(𝐻 (𝑥𝑖) = 𝑎𝑖) = (1
𝑚
)𝑛

We do not use k-independent hashing; as noted before and as

shown again in our experiments, hash functions tend to perform

empirically like their perfectly random counterparts. Moreover,

most proofs using k-independent hashing give big-O guarantees

but drop constant factors [48, 55, 57]. These constant factors are of

significant importance for high performance hash functions.

Source Model. Conditioned on 𝐿 we assume that the partial-keys

𝐿(𝑋) are i.i.d. distributed because the main metrics for hash-based

algorithms tend to be order-independent. For instance, whether

keys are ordered 𝑥1, . . . , 𝑥𝑛 or in the reverse order 𝑥𝑛, . . . , 𝑥1, the

slots filled in a linear probing hash table or the length of the linked

lists in a separate chaining hash table are identical. Similar state-

ments hold for the false positive rate of Bloom filters and the parti-

tions produced by partitioning. Thus, even if the original source has

a temporal nature that might be better modelled by a Markovian

assumption, the marginal distribution over time is more important.

3 CREATING PARTIAL-KEY FUNCTIONS
The first step is to create the partial-key function 𝐿 which needs

knowledge about the data we expect. In the case of fixed datasets,

such as read-only indexes like those used in the levels of LSM-based

key-value stores [54], this is the actual dataset. With updates, we

need a sample of past data and queries.

Metric for Partial-Key Hash Functions. Partial-key functions

have two metrics. The first is the number of bytes in their output,

with fewer being better so that subsequent hash computation is

faster. The second is the Rényi Entropy of order 2 of their output,

also known as the collision entropy. For a given discrete random

variable 𝑋 , its Rényi Entropy of order 2 is 𝐻2 (𝑋) = − log

∑𝑛
𝑖=1 𝑝

2

𝑖
where 𝑝𝑖 is the probability that 𝑋 takes on the 𝑖th symbol in an

alphabet A = {𝑠1, . . . 𝑠𝑛}. It draws its name from the fact that

if 𝑋1, 𝑋2 are drawn i.i.d. from the same distribution as 𝑋 , then

𝐻2 (𝑋) = − log
2
P(𝑋1 = 𝑋2). We use collision probability to refer to

P(𝑋) = P(𝑋1 = 𝑋2) and mean Rényi Entropy of order 2 whenever

we use the term entropy. For Entropy-Learned Hashing, Rényi

Entropy tells us how likely collisions are to occur. The following

lemma will be useful in our analysis:

Lemma 1. Given 𝑛 i.i.d. samples from a distribution 𝑋 , the num-
ber of observed collisions over the number of 2-combinations is an
unbiased estimator of the collision probability for 𝑋 . That is, if 𝑛𝑖 is
the number of times a symbol 𝑠𝑖 appears in the sample, then we have

E[
∑
𝑖

𝑛
2

𝑖

2

] = 𝑛2

2

P(𝑋)

where 𝑥2 = 𝑥 (𝑥 − 1) is the 2nd falling power. Equivalently,

E[
∑
𝑖

𝑛
2

𝑖

2

] = 𝑛2

2

2
−𝐻2 (𝑋)

Proof. There are

(𝑛
2

)
possible 2-combinations in 𝑛 samples, each

of which can produce a collision. The probability of collision is

2
−𝐻2 (𝑋)

and so the expected number of collisions is

(𝑛
2

)
P(𝑋). □

Optimization: Selecting the Bytes to Hash. The goal is to opti-

mize our two metrics on our optimization set, which is either the

fixed dataset or a training set of a sample of prior data items. Since

our two metrics are at odds, the goal is to find an optimal Pareto

frontier establishing for each 𝑘 = 1, 2, 3, . . . , what set of 𝑘 bytes

from our full-key input produces the most entropy.

Insight into this problem, as well as potential solutions, can be

found by analyzing the similar problem for maximizing Shannon

entropy (equivalently, Rényi entropy of order 1). In particular, for

Shannon entropy selecting the best subset of size 𝑘 of random

variables from amongst 𝑛 random variables is known to be NP-hard

[39], suggesting that an optimal solution for Rényi entropy is likely

computationally difficult. However, the greedy algorithm, described

in detail below, is known to provide a 1− 1

𝑒 approximation to the best

possible solution for Shannon Entropy because Shannon Entropy is

submodular [51]. Additionally, real-life applications of the greedy

algorithm tend to get solutions which are close to the optimal

solution [9]. Inspired by this success and by the connectedness

of Rényi and Shannon entropy, we use the greedy algorithm to

optimize Rényi entropy on our training set.

We start by using a dummy hash which reads zero bytes of the

data items. Then, we continually add new bytes to the partial key

function 𝐿 in a way that decreases the number of collisions the

most on the training data. After each new chunk of bytes, we record

the entropy (either on the fixed dataset or on a validation dataset

if data is not fixed) and repeat the process. We stop when 𝐿 has

Algorithm 1 ChooseBytes

Input: 𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎: either data items or sample of past data items

Input: 𝑡𝑒𝑠𝑡_𝑑𝑎𝑡𝑎: data to check entropy on (if not for fixed dataset)

1: positions = vector()

2: entropies = vector()

3: max_len = maximum length of any data item

4: while not all partial keys unique do
5: positions.push_back(NextByte(data,max_len,positions))

6: entropies.push_back(EstimateEntropy(test_data, positions))

7: data = NonUniqe(data, positions)

8: return positions, entropies

Algorithm 2 NextByte

Input: 𝑑𝑎𝑡𝑎: either data items or sample of past data items

Input: 𝑚𝑎𝑥_𝑙𝑒𝑛: maximum length item in dataset

Input: 𝑝𝑎𝑠𝑡_𝑏𝑦𝑡𝑒𝑠 : past bytes chosen
1: min_coll, min_i =∞,−1 // track of min # collisions, most entropic byte

2: for 𝑖 = 0 to max_len do
3: count_table, num_coll = {}, 0
4: for 𝑗 = 0 to len(data) do
5: p_key = 𝑑𝑎𝑡𝑎 [𝑗] using (past_bytes, i) // form partial-key

6: p_key = (len(data[j]), p_key) // length is always part of partial-key

7: count_table[p_key] + = 1 // increment count partial-key

8: num_coll += (count_table[p_key] - 1) // add collisions (if any)

9: if num_coll < min_coll then
10: min_coll, min_i = num_coll, i // update best byte

11: return min_coll, min_i

no collisions on the training data, and note that at each iteration

of the algorithm we need only to look at data items which are

not unique given previous bytes chosen for 𝐿, reducing algorithm

runtime substantially (items that are not equal on a subset of bytes

cannot be equal on a larger subset). At the end, we have a sequence

of partial-key functions which are our solutions for 𝑘 = 1, 2, 3, . . .

bytes, with higher 𝑘 meaning more input bytes are read but also

monotonically increasing the entropy of the output.

Algorithms 1 and 2 give (simplified) pseudocode for this proce-

dure. Additionally, Figure 4 shows example output from the proce-

dure. While for simplicity Algorithm 1 is shown choosing 1 byte at

a time, our implementation chooses 4 or 8 bytes at a time. This is

because most modern hash functions which come after 𝐿 operate

one word of data at a time. In addition, we limit the maximum byte

being chosen for partial-key hashing so that 90% of data items are

under that data size. In the end, 𝐻 ′
looks as follows:

if len(x) > last byte used in L:
return H(L(x))

else
return H(x)

Because we designed 𝐿 so that almost all keys satisfy the first

if statement, this makes the full hash function have predictable

branching statements. This initial if statement is also dropped if

the keys are of fixed length. The result, when 𝐿 is tightly integrated

into the hash function 𝐻 , is that 𝐻 ′
has predictable branches and a

small instruction count on average.

Evaluating the Resulting Entropy. To make decisions on how

many bytes are needed, we need an estimate of the entropy of 𝐿(𝑋).
When data is fixed, we use the training set as a ground truth value

for the entropy. When generalization to new data is needed, we use

separate validation data.

To estimate the entropy of 𝐿(𝑋), we compute the empirical

collision probability on the validation set 𝑉 by 1) computing 𝐿(𝑥)
for each 𝑥 in 𝑉 , 2) counting the number of collisions, and then

3) dividing this by
𝑣2

2
where 𝑣 is the number of items in 𝑉 . From

Lemma 1, this gives an unbiased estimate of the collision probability.

To get an estimate �̂�2 of the entropy, we take the negative log of

this number.

Given this estimator, the natural question to ask is "how many

samples are needed?". The techniques of [4, 53] use the birthday

paradox to answer this question; namely, if we want to say that

the entropy is at least some value 𝐻2 with confidence, we need

𝑂 (2𝐻2/2) samples. As we will show in Section 4, data structures

or algorithms storing 𝑛 elements will generally need 𝐻2 to grow

at a rate of log
2
𝑛, suggesting 𝑂 (𝑛1/2) samples is enough to say

with probability approaching 1 whether or not 𝐿(𝑋) has enough
entropy for a given task. Giving a concrete example, when using

𝑣 validation samples a 99% confidence estimator for the entropy

is: 𝐻2 ≥ min

{
�̂�2 − 2

log
2

𝑣2

400
2

with probability 0.99. Thus if our data

structure needs entropy 𝐻2 = log
2
𝑛, setting 𝑣 > 400

√
𝑛 is enough

validation samples to say with high probability whether or not

𝐿(𝑋) has the required entropy
1
. More details can be seen on this

analysis in the technical report [34].

The most important takeaways are that the number of validation

samples needed both varies with the data size and also grows slowly

with the data size. Thus, when we want to use Entropy-Learned

hashing on small data, the sample can be small because we only

need to make sure it has just enough entropy. When the data is

large, the number of samples needed grows but much more slowly

than the data size.

4 CONNECTING ENTROPY TO DATA
STRUCTURE PERFORMANCE

The next step in Entropy-Learned Hashing is understanding the

entropy needed for a given system task, i.e., a data structure or

algorithm used in a system. As Figure 1 shows, hashing is used in

a range of diverse systems to implement data structures and algo-

rithms for various complex operations. We study specifically the

entropy needed by three of the mostly widely used tasks, namely:

(1) Hash tables which are the default way to access data by

equality, and which are widely used across general purpose

programs including relational systems and key-value stores.

(2) Bloomfilterswhich are used to reduce accesses to a set and
are used in databases to reduce the costs of joins in OLAP

systems as well as point queries in key-value stores.

(3) Partitioning which is a core step in numerous algorithms.

Each of these tasks has multiple metrics of interest, including:

CPU cost, memory footprint, throughput, false positive rate, and

much more. The three hash-based operations above present a di-

verse set of expressions of these metrics. For example, Bloom filters

have small memory footprint compared to the other components,

1
We note this leading constant seems higher than what is necessary in practice,

suggesting possible further improvements in the analysis of this estimator.

while they all have drastically different characteristics in terms of

output write patterns which affects the overall throughput.

By creating cheaper to compute hash functions we improve the

computational efficiency; what is left to show is that the small in-

crease in expected collision probability does not result in significant

degradation on other metrics. For hash tables, the metric of interest

for performance is the number of comparisons needed to retrieve a

key. For Bloom filters, it is the false positive rate and for Partitioning

the variance of the distribution of data amongst bins.

There are two takeaways from the analysis in this section. The

first is that we can argue formally about the needed entropy from

partial-keys for data structures to behave as desired. This allows

us to design Entropy-Learned hash functions which bring end-to-

end performance benefits. Second, the analysis shows that across

all tasks, Hash tables, Bloom filters, and Partitioning, the needed

amount of Renyi entropy in 𝐿(𝑋) is approximately log
2
𝑛 plus a

constant 𝑐 . Thus, for a fixed dataset size, hashing needs only a

constant amount of randomness. If some fixed set of bytes provides

this amount of randomness, then hashing only need look at these

bytes and its computation becomes independent of key size in that

adding more bytes to the key does not increase hash computation

time. Additionally, the dependence on 𝑛 reaffirms our central thesis

and further clarifies where Entropy-Learned Hashing is most useful:

for large (hence random) objects or small datasets state-of-the-art

hash functions domorework than necessary. The value of 𝑐 depends

on how much collisions affect a data structure; for instance, hash

collisions in Bloom filters produce a certain false positive and so this

has a high value of 𝑐 , whereas for hash tables a collision produces

an extra comparison which is more tolerable and so 𝑐 is lower.

4.1 Hash Tables
Two prototypical designs of hash tables are separate chaining and

linear probing [20]. Separate chaining stores an array of linked lists.

To query for an item, separate chaining hash tables 1) perform a

hash calculation to get a slot 𝑎 between 0 and𝑚 − 1 and then 2)

traverse the linked list at slot 𝑎 until either the key is found or the

end of the list is reached (the key is not present). Linear probing

stores an array of keys and queries the table by 1) performing a hash

calculation to get an initial slot 𝑎, and then 2) traversing the array

in sequential order until either the key is found, or until an empty

slot is found (the key is not present). Separate chaining tables are

easier to manage and analyze because collisions only matter for the

same slot, however they have poor data locality because of many

pointer traversals and require extra space for the many pointers.

In contrast, linear probing offers better performance but is more

difficult to analyze and manage because of complex dependencies

between hash values.

4.1.1 Hash Tables: Separate Chaining.
Fixed Data.We first analyze separate chaining hash tables when

the data is known which is an important class of indexed data. We

then show this analysis translates from known data to random data.

Given 𝑆 |𝐿 = (𝐾 |𝐿, 𝑧), when querying for an item 𝑦 not in 𝐾 , the

expected number of comparisons 𝑃 ′ is

E[𝑃 ′ |𝑦] = 𝑧𝑦 +
𝑛 − 𝑧𝑦
𝑚

≈ 𝑧𝑦 + 𝛼

This is because the (likely 0) 𝑧𝑦 items which have the same partial

key for sure are in the same slot, and the other 𝑛 − 𝑧𝑦 items have

1/𝑚 chance of being in the same slot. This cost of querying for a

missing key is also equal to the cost of adding a new item into the

hash table, and this relationship holds true for linear probing as

well. This is because additions first verify the item is missing and

then put the item into the first empty slot they find.

By the same logic, querying for a key 𝑥 in 𝐾 costs 1 + 1

2
(𝑧𝑥 −

1 + 𝑛−𝑧𝑥
𝑚) comparisons on average. The leading 1 is because the

query key for sure compares with itself, and the second term is 1/2
times the expected number of items in the same slot as 𝑥 . Summing

across all data, the average cost 𝑃 of querying for a key satisfies:

E[𝑃] ≤ 1 + 1

2

𝛼 + 1

2

∑
𝑥 ∈𝐾|𝐿

𝑧
2

𝑥

𝑛

Random Data.When generalizing partial-key hashing to unseen

(random) data, the above equations can be viewed as conditional

expectations where we condition on the data. By using Adam’s Law,

i.e. 𝐸 [𝑋] = 𝐸 [𝐸 [𝑋 |𝑌]], we can average over the possible produced

datasets given by the random data. Using the union bound and

Lemma 1, the expected cost of querying for a missing key and the

average cost for querying for a key satisfy

E[𝑃 ′] ≤ 𝛼 + 𝑛2−𝐻2 (𝐿 (𝑋))
(1)

E[𝑃] ≤ 1 + 1

2

𝛼 + 1

2

(𝑛 − 1)2−𝐻2 (𝐿 (𝑋))
(2)

Comparison with Full-Key Hashing. For full key hashing, the

corresponding costs for querying for a missing key and the average

cost to query for a key are

E[𝑃 ′] = 𝛼

E[𝑃] = 1 + 1

2

𝑛 − 1

𝑚
≈ 1 + 1

2

𝛼

This shows the tradeoff between partial key hashing and full key

hashing. The number of comparisons is lower for full-key hashing,

but this advantage goes exponentially fast to 0 as the entropy of

the partial key hash increases. At the same time, the partial-key

hash is significantly cheaper to compute.

Looking at the required relationship between 𝑛 and the needed

entropy of the input sub-keys further clarifies when andwhy partial-

key hashing is useful. When 𝐻2 (𝐿(𝑋)) > log
2
𝑛, the number of

extra comparisons needed drops below 1 and continues to drop

exponentially fast with more entropy. Since hashing objects is more

expensive than comparing them, this point represents near definite

savings; the hash computation for the table is much faster while

the work after the hash function is nearly the same.

4.1.2 Hash Tables: Linear Probing.
Because of the complex dependencies between hash values and

collisions, linear probing is significantly more complicated to ana-

lyze resulting in lengthier proofs. We provide a high level overview

of the results while all detailed proofs can be found in the Appen-

dices. We start with full-key hashing. We analyze the expected

length of a full chain 𝑇 for a new item added to the hash table. The

chain includes the empty position on a chain’s right side but not

on its left side. Figure 3 shows an example.

X

Hash location

T

First empty location

Figure 3: Example of a linear probing chain.

Full-Key Hashing. Appendix Section A provides a novel analysis

of linear probing showing that the expected length of 𝑇 satisfies

𝐸 [𝑇] = 𝑄1 (𝑚,𝑛) where 𝑥𝑘 is the 𝑘-th falling power and𝑄𝑖 (𝑚,𝑛) =∑
𝑘≥0

(𝑘+𝑖
𝑖

)
𝑛𝑘

𝑚𝑘 . For a new item, each location in a probe chain is

equally likely as a hash location and so the expected probe cost

given 𝑇 is 𝐸 [𝑃 ′ |𝑇] = 1

2
+ 1

2
𝑇 . Using Adam’s law, it follows that

𝐸 [𝑃 ′] = 1

2

(1 +𝑄1 (𝑚,𝑛)) ≤
1

2

(1 + 1

(1 − 𝛼)2
)

which matches the known equations given by Knuth in [38].

The average cost to query a key is then equal to the average cost

to insert each key. Since the insertion cost 𝐸 [𝑃 ′] depends on 𝑛, we
use 𝑃 ′

𝑖
to denote the cost when there are 𝑖 keys in the table. The

average cost to query a key is then

𝐸 [𝑃] = 1

𝑛

𝑛−1∑
𝑖=0

𝐸 [𝑃 ′𝑖] =
1

2

(1 +𝑄0 (𝑚,𝑛 − 1)) ≤ 1

2

(1 + 1

1 − 𝛼)

Partial-Key Hashing: Fixed Data. When given 𝑆 |𝐿 = (𝐾 |𝐿, 𝑧),
the expected length of the probe chain 𝑇 depends on the number

of partial key matches for the inserted key 𝑦, and satisfies

𝐸 [𝑇] ≤ 𝑄1 (𝑚,𝑛) + 𝑧𝑦𝑄0 (𝑚,𝑛) +
∑
𝑥≠𝑦

𝑧
2

𝑥

𝑚
𝑄1 (𝑚,𝑛)

≤ 1

(1 − 𝛼)2
+

𝑧𝑦

1 − 𝛼 +
∑
𝑥≠𝑦

𝑧
2

𝑥

𝑚(1 − 𝛼)2

When the new key is unique, the most common scenario when

𝐻2 (𝐿(𝑋)) is high, each location in the probe chain is equally likely

and so 𝐸 [𝑃 ′ |𝑇] = 1

2
+ 1

2
𝑇 . However, when the new key is not unique,

each position in the chain is no longer equally likely. Thus we make

the worst case assumption that it is at the end of the probe chain.

𝐸 [𝑃 ′] ≤

1

2

(
1 + 1

(1−𝛼)2 +
∑
𝑥≠𝑦

𝑧
2

𝑥

𝑚 (1−𝛼)2
)

if 𝑧𝑦 = 0

𝑧𝑦
1−𝛼 + 1

(1−𝛼)2 +
∑
𝑥≠𝑦

𝑧
2

𝑥

𝑚 (1−𝛼)2 if 𝑧𝑦 > 0

(3)

When translating from 𝑃 ′ to 𝑃 , we again have that 𝐸 [𝑃] =∑𝑛−1
𝑖=0 𝐸 [𝑃 ′𝑖]. Since the cost of inserting each key is no longer the

same, there is the question of how to evaluate this expression. Here,

we make use of a fact first noticed in [59], that the average cost of

querying is equal for any order inwhich the items are inserted. Thus,

in evaluating 𝐸 [𝑃] = ∑𝑛−1
𝑖=0 𝐸 [𝑃 ′𝑖], we may choose the insertion or-

der of the items. Inserting all keys with non-unique partial-keys

first and then inserting all keys with unique partial-keys gives the

following bound for 𝐸 [𝑃].

𝐸 [𝑃] ≤ 𝑛 − 𝑑
2𝑛

+ 1

2

𝑄0 (𝑚,𝑛) +
𝑐

𝑚
𝑄0 (𝑚,𝑛) +

𝑐 + 𝑑
2𝑛

𝑄0 (𝑚,𝑑)

≈ 1

2

(1 + 1

1 − 𝛼) +
𝑐

𝑛
+ 𝑐

𝑚

1

1 − 𝛼
≤ (1

2

+ 𝑐

𝑛
) (1 + 1

1 − 𝛼) (4)

Weuse 𝑐 =
∑
𝑥 𝑧

2

𝑥 for the number of collisions and𝑑 =
∑
𝑥 :𝑧𝑥 ≥2 𝑧𝑥

as the number of items that are duplicated keys. The above approxi-

mation assumes that 𝑑/𝑚 is small, which is the case whenever most

keys are unique. This holds true with probability near 1 if entropy

is sufficiently large.

Random Data. Using equations (3), (4), and Lemma 1 as well as

Adam’s Law, we have

𝐸 [𝑃 ′] ≤ 1

2

(1 + 1

(1 − 𝛼)2
) + 𝑛2−𝐻2 (𝐿 (𝑋)) 3

2(1 − 𝛼)2
(5)

𝐸 [𝑃] ≤ 1

2

(1 + 1

1 − 𝛼) + 𝑛2
−𝐻2 (𝐿 (𝑋)) (1 + 1

1 − 𝛼) (6)

Comparison With Full-Key Hashing. The tradeoffs between

partial-key hashing and full-key hashing are similar to separate

chaining. Again, we have a slight increase in comparisons as a trade-

off for significantly faster hash function evaluation. The expected

number of comparisons again drops exponentially fast with the

source entropy and 𝐻2 (𝐿(𝑋)) needs only to be in the same order of

magnitude as log
2
(𝑛) for the extra needed comparisons to be small.

Thus, as before, partial-key hashing makes the work of computing

hash functions significantly cheaper while the work after the hash

function is near identical, producing a net performance benefit.

4.2 Bloom Filters
For Bloom filters, the central trade-off is between the speed of the

filter and the false positive rate (FPR) of the filter. As the number of

bytes given as input to the hash becomes smaller, hashing becomes

faster but there is a greater possibility of a partial-key collision,

creating a certain false positive.

More formally, let 𝐹𝑃𝑅(𝑚,𝑛, 𝐻) denote the false positive rate
of a Bloom Filter using𝑚 bits, storing 𝑛 items and using a hash

function𝐻 . For a Bloom Filter using partial-key hash𝐻 ′ = 𝐻 ◦𝐿, its
number of set bits is a function of the number of distinct items fed

to 𝐻 . If no keys collide on 𝐿, then it becomes a traditional Bloom

Filter storing 𝑛 items and using 𝐻 . If there are 𝑛′ < 𝑛 distinct items

after 𝐿, then the resulting filter structure has the same number of

set bits as one containing 𝑛′ items. So for query key 𝑦 ∉ 𝐾𝐿 , it has

a false positive rate of 𝐹𝑃𝑅(𝑚,𝑛′, 𝐻), whereas if 𝑦 ∈ 𝐾𝐿 it has a

false positive rate of 1. It follows that our Bloom Filter using ℎ′ has
exactly the following false positive rate:

𝐹𝑃𝑅(𝑚,𝑛, 𝐻 ′) = P(𝑌 |𝐿 ∈ 𝐾𝐿) + 𝐹𝑃𝑅(𝑚,𝑛′, 𝐻) (7)

The second term is less than 𝐹𝑃𝑅(𝑚,𝑛, 𝐻) as Bloom Filters’ false

positive rates increase with the number of items stored. If keys and

non-keys are very different conditioned on the set of bytes 𝐿, then

it is possible to make the FPR less than that of a standard Bloom

filter by having 𝑛′ << 𝑛 and P(𝑌 |𝐿 ∈ 𝐾𝐿) ≈ 0. However, we will

generally ignore this case and focus on the case where keys and

non-keys have the same distribution conditioned on 𝐿. In this case,

a convenient bound for (7) is

𝐹𝑃𝑅(𝑚,𝑛, 𝐻 ′) ≤ P(𝑌 |𝐿 ∈ 𝐾𝐿) + 𝐹𝑃𝑅(𝑚,𝑛, 𝐻) (8)

which is the FPR of a standard Bloom filter plus the probability that

the query key matches some item in the key set on the bytes 𝐿.

Using the union bound, equation (8) translates to:

𝐹𝑃𝑅(𝑚,𝑛,ℎ′) ≤ 𝑛2−𝐻2 (𝐿 (𝑋)) + 𝐹𝑃𝑅(𝑚,𝑛,ℎ) (9)

Comparison With Full-Key Hashing. The above analysis reaf-
firms the central takeaway of our analysis of hash tables; the

entropy of the dataset needs to be on the order of log
2
𝑛. For

Bloom filters, a reasonable additional goal is that the increase

in FPR be no more than some chosen 𝜀. In this case, we need

𝐻2 (𝐿(𝑋)) > log
2
𝑛 + log

2
(1/𝜀). So an additional entropy term is

needed to say that collisions are very rare for new partial-keys. As

we show in our experiments, datasets often have this surplus en-

tropy and so the Bloom Filter becomes significantly faster without

suffering any false positive rate increase.

4.3 Partitioning & Load Balancing
With Partitioning the goal is to distribute 𝑛 items, e.g., tuples or

computational tasks, to a set of𝑚 bins. Here, we characterize how

even this allocation is by analyzing the variance of the number of

items assigned to each bin when each input key is unique. At lower

variances, each bin is distributed closely around the average number

of items 𝑛/𝑚 whereas higher variance suggests the bins are highly

uneven. One important challenge comes when keys are skewed

and heavy hitters exist. While challenging, the unevenness comes

from the existence of heavy hitters rather than the quality of the

hash function, and so we focus on the hash quality by considering

the partitioning of all unique items.

Full-Key Hashing. With full-key hashing, the variance of each

bin is the variance of a binomial with 𝑛 balls each with probability

1/𝑚. Thus for a specific bin, its number of assigned objects 𝑌 has

𝑉𝑎𝑟 (𝑌) = 𝑛
𝑚 − 𝑛

𝑚2
.

Partial-Key Hashing: Fixed Data. The probability of each key in

𝐾𝐿 being assigned to a specific bin is distributed as an independent

Bernoulli trial with probability
1

𝑚 . Letting 1𝐻 (𝑥)=𝑖 be the event

that 𝑥 was hashed to bin 𝑖 , the variance of the number of objects 𝑌

assigned to bin 𝑖 is

𝑉𝑎𝑟 (𝑌 |𝐾 |𝐿) = 𝑉𝑎𝑟 (
∑
𝑥 ∈𝐾|𝐿

𝑧𝑥1𝐻 (𝑥)=𝑖) = (𝑛 +
∑
𝑥 ∈𝐾|𝐿

𝑧
2

𝑥) (
1

𝑚
− 1

𝑚2
)

Partial-Key Hashing: Random Data. For random data, we use

the same conditioning arguments as before. Using Eve’s Law, i.e.

𝑉𝑎𝑟 (𝑌) = E[𝑉𝑎𝑟 (𝑌 |𝐾𝐿)] + 𝑉𝑎𝑟 (E[𝑌 |𝐾𝐿]), we can calculate the

variance on random data. First, we note that for any set𝐾𝐿 , the value

of 𝐸 [𝑌 |𝐾𝐿] is 𝑛/𝑚 by the randomness of the hash function (each

bin is equally likely to contain any item). Thus 𝑉𝑎𝑟 (E[𝑌 |𝐾𝐿]) = 0

and again using Lemma 1, we have

𝑉𝑎𝑟 (𝑌) ≤ (1 + 𝑛2−𝐻2 (𝐿 (𝑋))) (𝑛
𝑚

− 𝑛

𝑚2
) (10)

Comparison With Full-Key Hashing. As before, 𝐻2 > log
2
𝑛 is

enough for partial-key hashing to have similar variance to full-key

hashing in terms of absolute terms. Thus, as in prior cases, once

𝐻2 > log
2
𝑛 we have faster computation in terms of partitioning

without sacrificing on the quality of our partitioning.

An important secondary argument for load balancing is whether

we care about the absolute deviation from the mean or the percent-

age deviation away from the mean. While the absolute variance

grows with 𝑛, the relative standard deviation, i.e. the standard devi-

ation over the mean, of the bins decreases with 𝑛 so that it becomes

less and less likely that some bin has 𝑥% more than its expectation.

Start Location
8-byte Word

Estimated
Entropy

48

56
40

80
72

11.3

29.1
22.4

29.2
infty

Capacity of separate chaining hash table
10,000

Chosen Bytes
40-47,48-55

Average Added Comparisons
2-22.4 * 10000 = 0.001

Figure 4: The amount of bytes needed is based on the data
and the current data structure capacity.

In particular, the relative standard deviation is less than√
𝑚

𝑛

√
1 + 𝑛2−𝐻2 (𝐿 (𝑋)) ≈

√
𝑚2

−𝐻2 (𝐿 (𝑋))
(11)

Since the expected distance from the mean for a binomial is domi-

nated by its standard deviation [12], the above statement actually

says that a bin’s expected proportional deviation away from its

mean is less than (11). So for instance, if we want a partition to be

within 5% of its mean on average, we can achieve this by having

𝐻2 ≥ 2 log
2

1

0.05 + log
2
𝑚.

Thus partitioning and load balancing have two regimes with

regards to Entropy-Learned Hashing. When small absolute variance

is required, we need 𝐻2 (𝐿(𝑋)) > log
2
𝑛; however, when 𝑛 is large

and we are simply interested in bins being relatively similar sizes,

we can let 𝐻2 (𝐿(𝑋)) be greater than log
2
𝑚 plus a small constant,

where the constant controls how much deviation is allowed.

5 RUNTIME INFRASTRUCTURE
Section 3 showed how to estimate the entropy of datasets when con-

ditioned on partial-keys and Section 4 showed how much entropy

is needed for important hashing-based tasks. This section brings

everything together by explaining how to utilize Entropy-Learned

Hashing at run time: namely, given a hash-based task and analysis

of a dataset, choose the Entropy-Learned Hash function to have just

enough randomness. Additionally, this section covers runtime in-

frastructure related to robustness so that Entropy-Learned Hashing

retains the trustworthiness of traditional hash data structures.

Creating Hash Tables. Hash tables have a maximum capacity

beyond which they need to rehash the stored items into a new

larger table. This keeps the load factor low and therefore query

times low. For Entropy-Learned Hashing, we use this maximum

capacity before rehashing to decide 𝐿. In particular, for separate

chaining hash tables, we choose 𝐿 such that 𝐻2 (𝐿(𝑋)) > log
2
𝑛 + 1,

where 𝑛 is the maximum number of items the current table will

hold before rehashing. For linear probing hash tables, we choose 𝐿

so that𝐻2 (𝐿(𝑋)) > log
2
𝑛+ log

2
5. Both values are chosen based on

the equations governing the number of comparisons, i.e. equations

(1), (2), (3), and (4), and make sure the number of comparisons

executed using partial-key hashing and full-key hashing are similar.

An example of how the current capacity is used to choose 𝐿 is

shown in Figure 4, where an initial table with capacity 1000 uses

just the 8-byte word at location 48 to hash keys.

As the capacity of a hash table changes (as new items are in-

serted), a rehash is triggered causing each item to be reinserted.

Entropy-Learned Hash tables uses this opportunity to change the

hash function; for instance, when key 1001 is inserted into the hash

table from Figure 4, a rehash is triggered causing the table to grow.

If the new capacity is above 2
11.3 = 2521, the partial-key function

adds another word to increase entropy to the required amount. As

a result, the hash table maintains just the right amount of entropy

needed throughout its life cycle, using as cheap a hash function as

possible without adding substantial extra collisions.

Bloom Filters. Bloom Filters need an estimate on the number of

items they will hold before their creation. This is because, without

access to their base items, they have no access to grow the number

of bits being used. While there are techniques around this [5], these

come with space and computation tradeoffs and it remains true that

standard Bloom filters need an up-front estimate of the number of

data items. For Entropy-Learned Hashing, this makes it simple to

choose the hash function. Given a maximum number of items 𝑛 and

an allowable added FPR of 𝜀, we set the partial-key hash function

to have entropy 𝐻2 (𝐿(𝑋)) > log
2
𝑛 + log

2
(1/𝜀).

Partitioning. For partitioning we require an estimate on the max-

imum number of items to be partitioned. We also need user input

on how even they want partitions to be. If absolute variance is

of primary importance (so that partitions are unlikely to vary by

more than some # of tuples regardless of partition size), then set-

ting 𝐻2 (𝐿(𝑋)) > log
2
𝑛 + 𝑐 assures that variance is no more than

(1 + 2
−𝑐) times its usual amount. The default value of 𝑐 which we

use is 3. When relative variance is more important, and users need

partitions to be roughly even (i.e. within 100c% of each other’s size),

we set 𝐻2 (𝐿(𝑋)) > log
2
𝑚 − 2 log

2
𝑐 as dictated by equation (11).

We use 𝑐 = 0.05 by default so that partitions are expected to be

within 5% of their expected size.

Robustness. While Entropy-Learned Hashing makes only weak

assumptions, namely that data which are somewhat random remain

somewhat random, it recovers good performance quickly when

assumptions are violated. Entropy-Learned Hashing is the most

robust for hash tables. This is for multiple reasons, namely: 1) if

collisions are as expected on items in the dataset, queries for both

keys in the data and not in the data return quickly (Section 4),

2) hash tables can monitor collisions during insertions with little

overhead, and 3) rehashing is an acceptable operation in hash tables

by default (it occurs in all standard hash table libraries). This third

point is the most key, and Entropy-Learned Hashing can rehash

hash tables if collisions ever deviate from what is expected, falling

back to full-key hashing if needed. For Bloom filters, their # of set

bits concentrates sharply around their expected value [14], and this

fact is used during construction of Entropy-Learned Bloom filters

to validate that the data items fit the expected level of randomness.

However, if they do not, or if queries are substantially different

than the inserted items, the filter must be rebuilt. For partitioning,

the cost of overloaded bins depends on the context, but for many

contexts, such as in-memory radix partitioning, this can be solved

by dividing the one or two overloaded bins into multiple bins.

Appendix Section B covers robustness in more detail.

6 EXPERIMENTAL EVALUATION
We now demonstrate that, by identifying and utilizing surplus

randomness in data, Entropy-Learned Hashing brings critical per-

formance benefits against the top hash functions used at scale today

by Google and Meta and across a diverse set of hash-based core

components of modern systems.

Our experimental evaluation consists of three parts. The first part,

which contains the bulk of our experiments, shows that Entropy-

Learned Hashing produces sizable benefits of up to 3.7×, 4.0×, and
14× for common medium-sized key types such as URLs and text

data. The second part of our experimental section covers benefits

from Entropy-Learned Hashing on large keys such as those that

would appear in deduplicating file blocks, with speedups of several

orders of magnitude. Finally, we cover training time for Entropy-

Learned Hashing and present the run times for applying the greedy

algorithm to select bytes to hash.

6.1 Setup and Methodology
Data Structures and Operations. We use a diverse set of data

structures and operations to apply Entropy-Learned Hashing: we

test with Hash tables, Bloom filters, and Partitioning.

Forhash tables, we compare against Google’s hardware-efficient

linear-probing hash table implementation, SwissTable [32, 42]. This

is the default hash table used in C++ throughout all Google op-

erations, and has been heavily optimized as a result of the large

computational footprint of hash tables at Google. A particular im-

plementation note for SwissTable is that it first does linear probing

into an array of tag bits (8 bits per key) to see if chosen bits from

hash values match, and only if they do, compares the full items. This

means probing for keys not in the table is cheaper than probing for

keys stored in the table. We also compared against F14, the default

hash table used at Facebook [16]. The results are extremely similar

and so we include only results with SwissTable.

For Bloom Filters, we implemented register blocked Bloom

filters from [43]. To cut down hashing time, and thus to be con-

servative with respect to our benefits, we used a variant of double

hashing wherein we compute one 64 bit hash function, split it into

two 32-bit hash values, and then use these as the inputs to dou-

ble hashing [37]. We also utilize the techniques for fast modulo

reduction by multiplication from [68].

For partitioning, many of the techniques devised by database

research such as software write buffers [74] and non-temporal

stores [10] do not apply to large data types or variable length data

types. Thus our partitioning is a simple for loop that computes hash

values and writes out data directly to a partition.

Base Hash Functions. We use three state-of-the-art hash func-

tions. For hash tables, we use wyhash, which is one of the two

default options used in SwissTable. We use both the version con-

tained in SwissTable as well as the most recent optimized version

of wyhash given directly by the author [73]. For Bloom filters we

use xxh3, which is used widely at Facebook and is the default for

the Bloom filters in RocksDB [19]. For partitioning we use the im-

plementation of CRC32 from the OLAP database Clickhouse [77].

Implementation. We modify each of the three base hash func-

tions. We maintain their basic interface (input is an array of bytes

plus a key length), and tightly integrate Entropy-Learned Hashing.

Thus there is Entropy-Learned xxh3, Entropy-Learned wyhash, and

Entropy-Learned CRC32. The bytes chosen to hash are selected at

hash function construction and stored in a const array. The func-

tions read from 𝑑𝑎𝑡𝑎[𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 [𝑖]] instead of 𝑑𝑎𝑡𝑎[𝑖], and we use

templates to generate efficient code for partial-key hash functions

using 1,2,3,4,.. words. These templates modify the initial function

Processor

Intel Xeon

E7-4820 v2

#sockets 4

#cores per socket 8

Hyper-threading 2-way

Turbo-boost Off

Clock speed 2.00GHz

L1I / L1D (per core) 32KB / 32KB

L2 (per core) 256KB

L3 (shared) 16MB

Memory 1TB

Table 2: Server Parameters

Dataset

name

Avg. key

length
keys

UUID 36 100K

Wikipedia 129 22K

Wiki 22 99K

HN URLs 75 247K

Google URLs 81 1.2M

Table 3: Real-world data.

LP Hash Table - 10,000 Items

1 Million Items

100 Million Items

a) b)

Figure 5: The entropy of a dataset grows quickly with the
amount of words being hashed. By 4 words, most datasets
support data structures with millions of elements.

to reduce branching statements because of the known length of the

partial-key. All implementation is in C++. All experiments for hash-

based tasks are in-memory since hash-based tasks typically run

in-memory. For example, a hash table should always fit in memory

to get good performance while a Bloom filter will also typically

reside in memory to protect from expensive disk access. Thus such

structures are both created and utilized in memory. When disk is

involved, the CPU cost of hashing is typically not highly visible in

terms of operational latency unless very fast disk devices such as

SSDs are used (although CPU usage is still reduced).

Datasets.We use five real-world datasets for experimentation. Two

datasets consist of URLs, with one containing the URLs of stored

Google Landmarks and the other all URLs posted to Hacker News

during 2015 [2, 52]. The other three, UUID, Wikipedia, and Wiki,

are database columns taken from a recent research study [13]. They

contain universally unique identifiers, sampled text fromWikipedia,

andWikipedia entry titles respectively. Table 3 presents the number

of items and average key length for each real-world dataset. In

addition, we use synthetic data to have finer control over key size

and data size. Section 6.3 uses 80 byte keys with bytes 32-39 drawn

randomly from the alphabet (26 possible values), and all other bytes

constant. Section 6.6 uses 8KB keys with each byte ideally random.

Experimental Setup. We use an Intel Ivy Bridge server. Table 2

summarizes the server parameters. We use Debian GNU/Linux 10

operating system. Data structures are queried for a warmup phase

before timing and input keys for queries are in cache. We pin the

thread to a particular core and locally allocate memory. We use

Intel VTune’s uarch-exploration [36] for performing hardware-level

time breakdown and Linux perf [45] for performing memory-level

parallelism tests and software-level time breakdown.

0

40

80

120

UUID Wp. Wiki Hn Ggle

Ha
sh

 T
ab

le
 P

ro
be

Ti

m
e

(n
s)

Google SwissTable wyhash Entropy-Learned Hashing

UUID Wp. Wiki Hn Ggle

Thpt numbers – with dummy hash – small – new
(1K small dataset, ½ of max_size for large)

UUID Wp. Wiki Hn Ggle
0

100

200

300

400

UUID Wp. Wiki Hn Ggle

In-cache
Hit rate = 1

In-cache
Hit rate = 0

In-memory
Hit rate = 0

In-memory
Hit rate = 1(a) (b) (c) (d)

Figure 6: Entropy-Learned Hashing reduces probe times for hash tables across datasets, data sizes, and hit rates.

6.2 Number of Words vs. Entropy
Before demonstrating performance results, we first make the idea

of surplus randomness more concrete with examples from real data.

We show that for many datasets with medium-sized keys, good

hashing properties can be achieved for data structures with millions

of elements while hashing only parts of the keys. We divide each

dataset in Table 3 in half. We use the first part to choose which

bytes to hash in a greedy manner as described in Section 3. This

produces an ordered list of bytes (or words) to choose. Choosing

more bytes from the list produces a partial-key function providing

more entropy. We use the second half of the dataset to get an

unbiased estimate of the entropy for each combination of bytes

as described in Section 3. Figure 5a shows that the entropy of the

result of the partial-key function increases for all datasets with the

number of words included. We see that by 3 words being included

all datasets have an entropy of at least 18, and 3 of the 5 have

entropies above 25. For Wikipedia and UUID, infinite entropy is

estimated because no collisions are observed with the partial-key

function. Figure 5b shows how this entropy translates into data

structures, where we see that the Google URLs dataset is capable

of using partial-key hashing with hundreds of millions of elements

while hashing just a couple words. Similar results can be seen

by transposing the other four datasets onto Figure 5b, with most

datasets supporting hash data structures larger than the actual

number of elements found in the dataset.

6.3 Hash Table Probe Time
After showing that datasets have enough entropy for partial-key

hashing to be used,we now turn to showing the performance bene-

fits which can be gained by using Entropy-Learned hash functions

for data structures and algorithms. We first focus on hash tables. We

examine the probe time per hash table lookup, where we perform

the lookups one after the other without any blocking, e.g., similar

to the probe-phase of the hash join algorithm.

Entropy-Learned Hashing Reduces Hash Table Probe Time.
We first test hash table probe times on real-world datasets for small

(L1-resident) and large data (L3/DRAM-resident) with 0% (hit rate =

0) and 100% (hit rate = 1) hit rates. We test with Google’s SwissTable

using three hash functions: (i) the default hash function provided

by SwissTable (GST), (ii) the most recent version of wyhash (FK),

and (iii) the Entropy-Learned wyhash hash function (ELH). The

small data contains one thousand keys, and the large data contains

half of the number of keys of the dataset (we use the other half

to generate probes for missing keys). Figure 6 shows the results,

wherein Entropy-Learned Hashing provides speedups across all

data sizes, datasets, and hit rates over full-key hashing. Across the

Call stack breakdown

0

10

20

30

40

50

wy. EL wy. EL wy. EL wy. EL

UUID Wp. Hn Ggle

Ha
sh

 T
ab

le
 P

ro
be

 T
im

e
(n

s)

Hash computation Table access

0

20

40

60

80

100

wy. EL wy. EL wy. EL wy. EL

UUID Wp. Hn Ggle

In-cache
Hit rate = 0

In-cache
Hit rate = 1

0

25

50

wy. EL wy. EL wy. EL wy. EL

UUID Wp. Hn Ggle

Ha
sh

 T
ab

le
 P

ro
be

Ti

m
e

(n
s)

Hash computation Table access

0

50

100

wy. EL wy. EL wy. EL wy. EL

UUID Wp. Hn Ggle

In-cache
Hit rate = 0

In-cache
Hit rate = 1

(a) (b)
Figure 7: Entropy-Learned Hashing significantly reduces
computation time bringing speedup as high as 2.9× for
cache-resident hash tables with (a) low and (b) high hit rates.

20 experiments, the average speedup using ELH over wyhash and

SwissTable’s default hash function is 1.40×, with these speedups

being as high 3.7× over the default hash function of SwissTable and

as high as 2.9× over wyhash, both of which are well engineered

functions and implementations.

Entropy-Learned Hashing Scales with Entropy, not Key Size.
To understand the reasons behind the speed up observed in Figure 6,

we first need to return to Table 3 and Figure 5. For full-key hashing,

it needs to hash each byte of the dataset, and so the number of

bytes processed is on average the key length given in Table 3. For

Entropy-Learned Hashing, the number of bytes it hashes is when

the entropy of the dataset (seen in Figure 5a) crosses the entropy

needed by the data structure (seen in Figure 5b). When there is a

large gap between these two numbers, Entropy-Learned Hashing

produces large speedups. For instance, the large gap between the

number of bytes hashed is why ELH achieves 2.9× speedup over

wyhash and 3.9× speedup over default SwissTable in Figure 6a.

Similarly, it is why ELH is 1.67× faster than wyhash and 1.81×
faster than default SwissTable on the Google dataset in Figure 6d.

While faster hashing computation uniformly brings speedups

to hash table probes, the amount of this speedup depends on other

factors of hash table queries, namely the hit rate and hash table

size. We now explain how the combination of these factors with

Entropy-Learned Hashing affects performance.

Computation Dominates for Cache-Resident Hash Tables.
For cache-resident hash tables, memory requests return quickly

and so computation dominates the overall cost of probes. In this

case, the savings created by Entropy-Learned Hashing depend on

how much work there is beyond the hash function evaluation. Fig-

ure 7 shows how the work beyond hashing differs for queries for

non-existing keys and for existing keys. When queries are for non-

existing keys, computation usually consists of the hash function

plus small amounts of computation using the tag bits. As Figure

7a shows, in this case the hash function evaluation is most of the

HN & Google MLP

0

100

200

300

400

wy EL wy EL

Hn Ggle
Ha

sh
 T

ab
le

 P
ro

be
 T

im
e

(n
s) Instructions

Memory
Other

(a) (b)

0

0.5

1

1.5

2

2.5

wy EL wy EL

Hn Ggle

M
LP

In-memory, Hit rate = 1

Figure 8: (a) MLP is significantly higher for ELH than it is
for full-key hashing. (b) As a result, ELH reduces both the
number of instructions executed andmemory waiting time.

cost and Entropy-Learned Hashing brings significant benefits. This

explains the 1.5×, 2.9×, 1.8×, and 1.8× speedup over wyhash seen

in Figure 6a for the UUID, Wikipedia, Hacker News, and Google

datasets, respectively. When queries are for keys in the dataset,

Figure 7b shows the comparison after the hash function evaluation

takes significant time. As a result, Entropy-Learned Hashing still

provides benefits but not quite as large as before, with the sav-

ings being 1.23×, 1.41× 1.28×, and 1.28× for the UUID, Wikipedia,

Hacker news, and Google datasets, respectively. Thus in cache,

Entropy-Learned Hashing provides up to a 40% speedup for queries

on existing keys and up to a 3× improvement on non-existent keys.

Memory Parallelism Dominates for Large Hash Tables. At
large data sizes, the increase in computational performance from

faster hashing leads to more efficient use of the memory hierarchy.

This is due to the effects of CPU pipelining. Namely, when hash

table lookups are done one after the other without blocking, then

the CPU typically pipelines multiple hash table lookups which are

then executed in parallel [40]. Entropy-Learned Hashing reduces

the amount of computation required, and as a result, the CPU fits a

larger number of hash table lookups into its pipeline. The effect of

this increased pipelining is what creates the speedups seen at large

data sizes in Figure 6c and 6d across datasets, with Entropy-Learned

Hashing being as much as 1.67× faster than the nearest competitor.

The amount of this savings depends on the costs of memory

accesses, with more expensive memory accesses leading to larger

improvements. For instance, in Figure 6d we see that the larger

datasets Google and Hacker News produce greater savings than the

smaller datasets Wikipedia, UUID, and Wiki. Similarly, comparing

Figure 6d to 6c, querying for existing keys produces greater savings

because we view both tag bits and full-keys in comparison to just

the tag bits most often for missing keys.

Figures 8a and 8b refine this analysis. Figure 8a shows thememory-

level parallelism (MLP), which is defined as the number of L1 data

cache misses per CPU cycle, for the Hacker News and Google

datasets using hit rate = 1. The higher MLP in 8a indicates that a

large number of data cache misses are being executed in parallel

by Entropy-Learned Hashing than by full-key hashing. Figure 8b

shows how this affects the overall runtime of hash table probes

under the same setup, with Entropy-Learned Hashing reducing

both the number of instructions executed and memory waiting

time. This analysis corroborates the results seen in Figure 6c and

6d, where Entropy-Learned Hashing provides a 1.31× speedup on

average over full-key hashing.

Data size experiments

0

0.5

1

1.5

2

1K 10K 100K 1M 10M 100M

Sp
ee

du
p

Number of keys

Hit rate = 0 Hit rate = 1

0

0.5

1

1.5

2

2.5

1K 10K 100K 1M 10M 100M 1K 10K 100K 1M 10M 100M

Hit rate = 0 Hit rate = 1

M
em

or
y-

le
ve

l p
ar

al
le

lis
m

Number of keys

Full key
Entropy-learned key

0

1

2

1K 10
K

10
0K 1M 10
M

10
0M

Sp
ee

du
p

Number of keys

Hit rt. = 0 Hit rt. = 1

0
0.5

1
1.5

2
2.5

1K 10
K

10
0K 1M 10
M

10
0M 1K 10

K
10

0K 1M 10
M

10
0M

Hit rt. = 0 Hit rt. = 1

M
LP

Number of keys

wyhash ELH

(a) (b)
Figure 9: (a) Entropy-Learned Hashing provides larger ben-
efits for missing keys at small data sizes and larger bene-
fits for existing keys at large data sizes. (b) Entropy-Learned
Hashing improves memory-level parallelism.

Entropy-Learned Hashing Scales with Data. We now turn to

experiments with synthetic data so that we can more finely control

the data size and experiment with larger data sizes. Figure 9a shows

the main result, which is that Entropy-Learned Hashing provides

benefits for hash tables across small and large data sizes. At small

data sizes of 1K tuples, Entropy-Learned Hashing provides 2.33×
speedups on queries for non-existing keys and 1.30× speedups for

existing keys. For large data sizes of 100M tuples, this speedup is

1.3× for missing keys and 1.7× for existing keys. Figure 9b shows

that the reason for these speedups is as discussed before for the

real-world datasets. Namely, at small data sizes the savings in com-

putation directly produce speedups for Entropy-Learned Hashing,

whereas for large data sizes the more efficient hash computation

leads to better MLP which produces faster probe times.

6.4 Bloom Filter Lookup Time & FPR
In this section, we evaluate Entropy-Learned Hashing for Bloom

filters. We examine the lookup time and false positive rate (FPR)

metrics. As input parameters, we let the FPR of the filter be 3%

and allow the Entropy-Learned Hashing filter to deviate in FPR

by 1%. The filter uses 3 hash functions, but computes only 1 due

to double hashing. All parameters are tunable; this experimental

setup is meant to reflect high-throughput filters such as those in

filter push-down before joins [43]. For the small data size we use

1K keys and for the large data size we again use half the number of

keys in the data.

Entropy-Learned Hashing Reduces Filter Lookup Time. Fig-
ures 10a and 10b present results for Bloom filters lookup time and

FPR using xxHash and Entropy-Learned Hashing. Figure 10a shows

that Entropy-Learned Hashing improves performance on high en-

tropy datasets such as Google, Hacker News, UUID, and Wikipedia.

The speedup is consistently between 1.85× and 4.51×. For Wiki,

which has both small key size and low entropy, the speedup is

small. Across all datasets, the average speedup is 2.10×, so that

Entropy-Learned Hashing consistently provides drasticaly faster

throughput on Bloom filter queries.

Entropy-Learned Hashing has Tunable Added FPR. Figure
10b presents the FPR of Bloom filters using Entropy-Learned Hash-

ing and full-key hashing. Most importantly, as can be seen in Figure

10b, the FPR is within 1% as our tuning parameter suggests so that

our analytical bounds hold. Additionally, Figure 10b shows that the

increase in FPR is usually much less than this tuning parameter, in

this case being only 0.1%. Thus, for most datasets the difference in

Blocked Bloom filter numbers

0

15

30

45

UU
ID

W
p.

W
iki Hn

Gg
le

UU
ID

W
p.

W
iki Hn

Gg
le

Small data Large data

Lo
ok

up
 ti

m
e

(n
s) xxh3 ELH

0

0.02

0.04

UU
ID

W
p.

W
iki Hn Gg
le

UU
ID

W
p.

W
iki Hn Gg
le

Small data Large data
FP

R
(a) (b)

Figure 10: Improving Bloom filter lookup time (a) and false
positive rates (b) for small and large data sizes.

FPR is negligible. Additionally, this FPR increase can be adjusted

down or up as needed. Reducing the allowed increase in FPR in-

creases the entropy needed and so requires more hash computation,

and so this represents a tunable FPR vs. speed tradeoff.

Bloom Filters require more entropy than Hash Tables. For a
dataset size of 𝑛 and added FPR of 𝜀, ELH requires log

2
𝑛+ log

2
(1/𝜀)

entropy, which is approximately log
2
(1/𝜀) more entropy than hash

tables. For certain datasets such as Wiki or Hacker News, this goes

beyond the entropy they can provide using small partial-keys and

so they revert to using full-key hashing at large data sizes as can be

seen in Figures 10a and b. For Google URLs, Wikipedia, and UUID,

they have more than enough entropy and each can support at least

100× more data or a 100× lower added FPR. Thus, these datasets

maintain consistent speedups at no cost to FPR for very large data

sizes as seen in Figure 10b.

6.5 Partitioning Time & Variance
Partitioning is used in many contexts. For instance, tuples may be

sent across the network in settings such as map-reduce or simply

partitioned in memory as in radix-partitioning before hash joins.

Because of this, the cost of partitioning depends very heavily on

the application it is used in. To help guide users in terms of whether

Entropy-Learned Hashing can be useful for their application, we

provide three micro-benchmarks. These benchmarks show the in-

creased computational efficiency of Entropy-Learned Hashing on

partitioning and put this computational efficiency in context. In the

first micro-benchmark, we only compute the partition assigned to

each input key. In the second, we keep a list of positional identifiers

for each partition and write out the position of each key assigned

to each partition. In the third, we write out the actual keys assigned

to each partition. As we progress through the microbenchmarks,

we move from a computationally heavy task with few writes to a

memory bandwidth intensive task which is mostly memory bound.

Depending on the setup, the benefit in performance from using

Entropy-Learned Hashing may be between 14× and 18%. Thus, the

benefit of Entropy-Learned Hashing for partitioning depends on

whether the saved computational cycles are of use, either directly

through speedups on the task at hand, or indirectly, by allowing

other computation to take place while network or memory I/O is

being performed. Like Bloom Filters, partitioning has a tunable pa-

rameter which allows the variance (equivalently standard deviation)

to increase in exchange for faster hashing. We set this parameters

so that each partition is expected to be within 5% of its mean.

Entropy-Learned Hashing Reduces Partitioning Time. Table
4 presents the speedups of Entropy-Learned Hashing for the three

Pure hashing Pos. id. Data

Par. 64 1024 64 1024 64 1024

UUID 3.15 3.15 2.05 1.38 1.01 1.00

Wp. 14.10 14.09 6.18 2.66 1.23 1.18

Wiki 1.25 1.09 1.37 1.10 1.01 1.01

Hn 4.29 1.00 2.72 1.00 1.17 1.03

Ggle 7.83 7.82 2.51 1.42 1.01 1.00

Table 4: Speeding up when partitioning.

Pure hashing Pos. id. Data

Par. 64 1024 64 1024 64 1024

UUID 1.44 0.95 1.44 0.95 1.44 0.95

Wp. 0.92 1.02 0.92 1.02 0.93 1.02

Wiki 1.35 1.01 1.35 1.01 1.35 1.01

Hn 2.06 1.00 2.06 1.00 2.05 1.00

Ggle 1.09 1.08 1.09 1.08 1.09 1.08

Table 5: The relative standard deviations of Entropy-
Learned Hashing and full-key hashing are similar.
configurations we examine. Entropy-Learned Hashing dramati-

cally improves the hashing computation as can be seen by the left

side of Table 4, with increases in speed of above 3× for 4 of the

5 datasets and speedups of up to 14.1×. Partitioning by writing

out positional identifiers, seen in the middle column of Table 4, is

similar, with increases in speed of greater than 2× for 4 of the 5

datasets and speedups of up to 6.2×. Thus, the results show that

the computational cost of partitioning is significantly cheaper us-

ing Entropy-Learned Hashing. At the same time, writing out large

amounts of data can limit the benefits of using ELH for partitioning,

as seen in the right side of Table 4. By writing out long-key strings

at each iteration of the partitioning, limitations on write bandwidth

limit gains from Entropy-Learned Hashing. Still, even in this case

the speedups can be as much as 20%, and additionally CPU usage

is reduced which frees up the CPU for other tasks.

Partitioning quality is maintained using Entropy-Learned
Hashing. Table 5 presents normalized relative standard deviation

for partitioning, where relative standard deviation is obtained by di-

viding the standard deviation by the average. We calculate relative

standard deviation for both full-key and Entropy-Learned Hashing

and normalize the Entropy-Learned Hashing to the full-key hash-

ing. As Table 5 shows, the normalized relative standard deviations

concentrate around one, which shows that the partitions produced

by the full-key hashing and the partitions produced by the entropy-

learned hashing are similar. In the case they are not, such as for

Hacker News with 64 partitions, the relative standard deviation

of Entropy-Learned Hashing is less than 3% so that partitions are

within 3% of their expected number of items on average.

6.6 Large Key Experiments
A key benefit of Entropy-Learned Hashing is that it creates hash

functions whose runtime is independent of key size. While this pro-

vides computational benefits for data with medium sized keys such

as URLs and text, we now show that the speedup is much larger for

large keys such as file blocks. To demonstrate this effect, we repeat

our experiments for hash tables, bloom filters, and partitioning but

with synthetic random keys of 8192 bytes each. Figure 11 shows the

results. For hash tables with all successful lookups, the benefits of

Key size new

1

10

100

1000

In-memo ry In-cach e In-memo ry In-cach e

Hit rat e = 1 Hit rat e = 0 Bloo m fi lte r Par tition ing

Sp
ee

du
p

Speedup Over Optimized Full-key Hash

1.48 1.61

10.2
23.9

47.2

228

Figure 11: Entropy-LearnedHashing provides orders ofmag-
nitude speedups with large key sizes.

Entropy-Learned Hashing are naturally bounded because the need

to compare full keys limits the throughput of this task. However,

for hash table lookups that are misses, Bloom filter probes, and

partitioning, Entropy-Learned Hashing brings a large speedup that

is unbounded and can be one to two orders of magnitude.

6.7 Training Time
We now demonstrate that the training time needed for Entropy-

Learned Hashing is not a bottleneck. We use the full Google dataset.

bytes 1 4 8

Optimized 214 s 11.6 s 6.4 s

Naive 29 min. 13 min 5 min

Table 6: Training runtime

Table 6 shows the re-

sults, displaying al-

gorithm run times

for a naive imple-

mentationwhich keeps

all data points at each iteration, and for our optimized implemen-

tation which discards unique keys after each iteration. There are

three main takeaways. First, the training time is reasonable for

all sizes of contiguous bytes chosen, with runtimes between sev-

eral minutes and several seconds. Second, pruning items which

are unique from the dataset after each iteration produces substan-

tial runtime benefits (if an item is unique on some subset of bytes,

adding new bytes cannot create a collision for that item). Third, as

the size of the contiguous byte locations we choose increases, the

runtime decreases significantly because there are fewer options at

each iteration and because after fewer iterations the number of data

items that are non-unique is low (making each step, i.e. Algorithm

2, fast).

6.8 Additional Experiments
The paper focuses on a curated set of experiments which best

showcase the properties of Entropy-Learned Hashing. Due to space

constraints, this leaves out several experiments which cover other

key metrics. Briefly, this includes experiments on 1) the efficiency of

creating Entropy-Learned Hash data structures, 2) probing separate

chaining hash tables, 3) experiments with dependent accesses (i.e.

hash table lookups and Bloom filter lookups which must run one

after the other instead of in parallel), 4) additional experiments on

Bloom filters showing a range of desired false positive rates, and

5) experiments showing robustness properties. We include all of

these results in the technical report [34].

7 RELATEDWORK
Entropy&Hashing.Chung,Mitzenmacher, andVadhan’swork [18,

48] explains why current hash functions perform well, hypothesiz-

ing that data randomness is the reason this occurs. Our work makes

a step forward to change the practice of hashing by recognizing

this randomness, choosing how much and which parts of the data

we need to hash, and making hash functions cheaper.

Non-Cryptographic Hash Functions. New hash functions are

continually designed and fitted to modern processors [71]. This

includes works with some form of data-independent randomness

guarantees such as multiply-shift [27], CLHash [44], and tabula-

tion hashing[58, 79]. These works are complementary to Entropy-

Learned Hashing as they can be modified to work over subsets of

bytes to achieve even better speeds.

Data-Dependent hash structures.Hash functions which depend
on the data have been considered before. For point lookups, this

includes perfect hashing [31] and learned hash indexes [41]. Both

these methods introduce computational overhead while trying to

reduce the number of collisions. Entropy-Learned Hashing is com-

plementary to such works and it can be used in conjunction with

these techniques to get both better computation and a lower number

of collisions. Additional work which is related in terms of learning

from data to create better hash data structures is work on using

data to improve filter structures [21, 26, 47, 72]. These all improve

the false positive rate of filters, and use hash computation as part

of their design. Thus, Entropy-Learned Hashing is again comple-

mentary in that it can be used to speed up the processing time of

these filters.

Cryptographic Hash Functions. Cryptographic hash functions

such as MD5 [67], SHA1 [29] and newer variants have more strin-

gent measures on the ability to invert hash function outputs, but can

and have been used for hash-based data structures. A cryptographic

hash function specifically designed for hash-based data structures

is SipHash [8]. While development of newer cryptographic hash

functions has made cryptographic hashing faster, it remains an

order of magnitude slower than non-cryptographic hashing [19].

8 CONCLUSION & FUTUREWORK
This paper introduces Entropy-Learned Hashing, a way to produce

hash functions with reduced computational cost tailored to a given

context. This happens by learning the amount of randomness in

input data and producing hash functions that give just enough

randomness to their output. We demonstrate that Entropy-Learned

Hashing leads to substantial computational benefits on hash tables,

Bloom filters, and load balancing. Future work in the path of context

specific hash functions includes investigating the relationship be-

tween the distribution of source data and the necessary operations

inside the hash function such that we can customize functions not

only with respect to the data bytes they utilize but also with respect

to the exact computation that needs to be performed.

9 ACKNOWLEDGEMENTS
This work is partially funded by the USA Department of Energy

project DE-SC0020200 and by the Swiss National Science Founda-

tion Early Postdoc Mobility scholarship P2ELP2_199749.

REFERENCES
[1] [n.d.]. gcc libstdc++ hash. https://github.com/gcc-mirror/gcc/blob/master/

libstdc%2B%2B-v3/libsupc%2B%2B/hash_bytes.cc. Accessed: 2021-05-23.

[2] 2015. Hacker News Posts. https://www.kaggle.com/hacker-news/hacker-news-

posts. Accessed: 2021-05-23.

[3] 2019. Linker Throughput Improvement in Visual Studio 2019.

https://devblogs.microsoft.com/cppblog/linker-throughput-improvement-

in-visual-studio-2019/.

[4] Jayadev Acharya, Alon Orlitsky, Ananda Theertha Suresh, and Himanshu Tyagi.

2017. Estimating Renyi Entropy of Discrete Distributions. IEEE Transactions on
Information Theory 63, 1 (2017), 38–56. https://doi.org/10.1109/TIT.2016.2620435

[5] Paulo Sérgio Almeida, Carlos Baquero, Nuno Preguiça, and David Hutchison.

2007. Scalable Bloom Filters. Inf. Process. Lett. 101, 6 (March 2007), 255–261.

[6] Austin Appleby. [n.d.]. murmurhash3. https://github.com/aappleby/smhasher/

wiki/MurmurHash3. Accessed: 2021-05-23.

[7] Austin Appleby. [n.d.]. smhasher suite. https://github.com/aappleby/smhasher.

Accessed: 2021-05-23.

[8] Jean-Philippe Aumasson and Daniel J. Bernstein. 2012. SipHash: A Fast Short-

Input PRF. In Progress in Cryptology - INDOCRYPT 2012, Steven Galbraith and

Mridul Nandi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 489–508.

[9] Eric Balkanski, Sharon Qian, and Yaron Singer. 2021. Instance specific approxi-

mations for submodular maximization. In International Conference on Machine
Learning. PMLR, 609–618.

[10] Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M. Tamer Özsu. 2013. Multi-

Core, Main-Memory Joins: Sort vs. Hash Revisited. Proc. VLDB Endow. 7, 1 (Sept.
2013), 85–96. https://doi.org/10.14778/2732219.2732227

[11] Burton H Bloom. 1970. Space/time trade-offs in hash coding with allowable

errors. Commun. ACM 13, 7 (1970), 422–426.

[12] Colin R. Blyth. 1980. Expected Absolute Error of the Usual Estimator of the

Binomial Parameter. The American Statistician 34, 3 (1980), 155–157. http:

//www.jstor.org/stable/2683873

[13] Peter Boncz, Thomas Neumann, and Viktor Leis. 2020. FSST: Fast Random Access

String Compression. 13, 12 (2020), 2649–2661.

[14] Andrei Broder, Michael Mitzenmacher, and Andrei Broder I Michael Mitzen-

macher. 2002. Network Applications of Bloom Filters: A Survey. In Internet
Mathematics. 636–646.

[15] Andrei Z. Broder. 1997. On the resemblance and containment of docu-

ments.. In SEQUENCES, Bruno Carpentieri, Alfredo De Santis, Ugo Vaccaro, and

James A. Storer (Eds.). IEEE, 21–29. http://dblp.uni-trier.de/db/conf/sequences/

sequences1997.html#Broder97

[16] Nathan Bronson and Xiao Shi. [n.d.]. Open-sourcing F14 for faster, more memory-

efficient hash tables. https://engineering.fb.com/2019/04/25/developer-tools/f14/.

[17] J. Lawrence Carter and Mark N. Wegman. 1977. Universal Classes of Hash Func-

tions (Extended Abstract). In Proceedings of the Ninth Annual ACM Symposium
on Theory of Computing (Boulder, Colorado, USA) (STOC ’77). Association for

Computing Machinery, New York, NY, USA, 106–112.

[18] Kai-Min Chung, Michael Mitzenmacher, and Salil Vadhan. 2013. Why Simple

Hash Functions Work: Exploiting the Entropy in a Data Stream. Theory of
Computing 9, 30 (2013), 897–945. https://doi.org/10.4086/toc.2013.v009a030

[19] Yann Collet. [n.d.]. xxHash. https://cyan4973.github.io/xxHash/. Accessed:

2021-05-23.

[20] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2009. Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press.

[21] Zhenwei Dai and Anshumali Shrivastava. 2020. Adaptive Learned Bloom Filter

(Ada-BF): Efficient Utilization of the Classifier with Application to Real-Time

Information Filtering on the Web. In Advances in Neural Information Processing
Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Eds.),

Vol. 33. Curran Associates, Inc., 11700–11710. https://proceedings.neurips.cc/

paper/2020/file/86b94dae7c6517ec1ac767fd2c136580-Paper.pdf

[22] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal

Navigable Key-Value Store. In Proceedings of the ACM SIGMOD International
Conference on Management of Data. 79–94.

[23] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2018. Optimal Bloom

Filters and Adaptive Merging for LSM-Trees. ACM Transactions Database Systems
(TODS) 43, 4 (2018), 16:1–16:48.

[24] Niv Dayan and Stratos Idreos. 2018. Dostoevsky: Better Space-Time Trade-Offs for

LSM-Tree Based Key-Value Stores via Adaptive Removal of Superfluous Merging.

In Proceedings of the ACM SIGMOD International Conference on Management of
Data. 505–520.

[25] Niv Dayan and Moshe Twitto. 2021. Chucky: A Succinct Cuckoo Filter for LSM-

Tree. In Proceedings of the 2021 International Conference on Management of Data
(Virtual Event, China) (SIGMOD/PODS ’21). Association for Computing Machin-

ery, New York, NY, USA, 365–378. https://doi.org/10.1145/3448016.3457273

[26] Kyle Deeds, Brian Hentschel, and Stratos Idreos. 2020. Stacked Filters: Learning

to Filter by Structure. Proc. VLDB Endow. 14, 4 (dec 2020), 600–612.
[27] Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Penttonen.

1997. A Reliable Randomized Algorithm for the Closest-Pair Problem. Journal of
Algorithms 25, 1 (1997), 19–51.

[28] Markus Dreseler, Martin Boissier, Tilmann Rabl, and Matthias Uflacker. 2020.

Quantifying TPC-H Choke Points and Their Optimizations. Proc. VLDB Endow.
13, 8 (April 2020), 1206–1220. https://doi.org/10.14778/3389133.3389138

[29] D. Eastlake and P. Jones. 2001. RFC3174: US Secure Hash Algorithm 1 (SHA1).

[30] P. Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. Hyper-

LogLog: the analysis of a near-optimal cardinality estimation algorithm. Discrete
Mathematics & Theoretical Computer Science (2007), 137–156.

[31] Michael L. Fredman, Michael L. Fredman, Michael L. Fredman, Michael L. Fred-

man, Janos Komlos, Janos Komlos, Janos Komlos, Janos Komlos, Endre Szemeredi,

Endre Szemeredi, Endre Szemeredi, and Endre Szemeredi. 1982. Storing a sparse

table with O(1) worst case access time. In 23rd Annual Symposium on Foundations
of Computer Science (sfcs 1982). 165–169. https://doi.org/10.1109/SFCS.1982.39

[32] Google. [n.d.]. Abseil Common Libraries. https://github.com/abseil/abseil-cpp.

[33] Jason Gregory. 2009. Game engine architecture (1 ed.). Taylor & Francis Ltd.

[34] Brian Hentschel, Utku Sirin, and Stratos Idreos. [n.d.]. Entropy-Learned Hash-

ing Technical Report. http://daslab.seas.harvard.edu/EntoryLearnedHashing/

EntropyLearnedHashingTechnicalReport.pdf.

[35] Stratos Idreos and Mark Callaghan. 2020. Key-Value Storage Engines. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data.
2667–2672.

[36] Intel. 2021. Intel VTune Amplifier XE Performance Profiler.

http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/.

[37] Adam Kirsch and Michael Mitzenmacher. 2006. Less hashing, same performance:

building a better bloom filter. In European Symposium on Algorithms. Springer,
456–467.

[38] Donald E. Knuth. 1998. The Art of Computer Programming, Volume 3: (2nd Ed.)
Sorting and Searching. Addison Wesley Longman Publishing Co., Inc., USA.

[39] Chun-Wa Ko, Jon Lee, and Maurice Queyranne. 1995. An exact algorithm for

maximum entropy sampling. Operations Research 43, 4 (1995), 684–691.

[40] Onur Kocberber, Babak Falsafi, and Boris Grot. 2015. Asynchronous Memory

Access Chaining. Proc. VLDB Endow. 9, 4 (2015), 252–263.
[41] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.

The case for learned index structures. In Proceedings of the 2018 International
Conference on Management of Data. ACM, 489–504.

[42] Matt Kulukundis. [n.d.]. Designing a Fast, Efficient, Cache-friendly Hash Table,

Step by Step. https://www.youtube.com/watch?v=ncHmEUmJZf4.

[43] Harald Lang, Thomas Neumann, Alfons Kemper, and Peter Boncz. 2019.

Performance-optimal filtering: Bloom overtakes cuckoo at high throughput. Pro-
ceedings of the VLDB Endowment 12, 5 (2019), 502–515.

[44] Daniel Lemire and Owen Kaser. 2016. Faster 64-bit universal hashing using carry-

less multiplications. Journal of Cryptographic Engineering 6, 3 (2016), 171–185.

[45] Linux. 2021. Perf Wiki. https://perf.wiki.kernel.org/.

[46] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir Braverman,

Roy Friedman, and Vyas Sekar. 2019. Nitrosketch: Robust and General Sketch-

Based Monitoring in Software Switches. In Proceedings of the ACM Special Interest
Group on Data Communication (Beijing, China) (SIGCOMM ’19). Association for

Computing Machinery, New York, NY, USA, 334–350. https://doi.org/10.1145/

3341302.3342076

[47] Michael Mitzenmacher. 2018. A Model for Learned Bloom Filters and Optimizing

by Sandwiching. In Advances in Neural Information Processing Systems, S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.),

Vol. 31. Curran Associates, Inc.

[48] Michael Mitzenmacher and Salil Vadhan. 2008. Why simple hash functions work:

Exploiting the entropy in a data stream. Proceedings of the Annual ACM-SIAM
Symposium on Discrete Algorithms, 746–755.

[49] Michael David Mitzenmacher and Alistair Sinclair. 1996. The Power of Two Choices
in Randomized Load Balancing. Ph.D. Dissertation. AAI9723118.

[50] Hamid Mohamadi, Justin Chu, Benjamin P. Vandervalk, and

Inanc Birol. 2016. ntHash: recursive nucleotide hashing. Bioin-
formatics 32, 22 (07 2016), 3492–3494. https://doi.org/10.1093/

bioinformatics/btw397 arXiv:https://academic.oup.com/bioinformatics/article-

pdf/32/22/3492/19397493/btw397_Sup.pdf

[51] George LNemhauser, Laurence AWolsey, andMarshall L Fisher. 1978. An analysis

of approximations for maximizing submodular set functions—I. Mathematical
programming 14, 1 (1978), 265–294.

[52] Hyeonwoo Noh, Andre Araujo, Jack Sim, and Bohyung Han. 2016. Large-Scale

Image Retrieval with Attentive Deep Local Features. International Conference on
Computer Vision (ICCV) (2016). http://arxiv.org/abs/1612.06321

[53] Maciej Obremski and Maciej Skorski. 2017. Renyi Entropy Estimation Revisited.

In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA
(LIPIcs, Vol. 81), Klaus Jansen, José D. P. Rolim, David Williamson, and Santosh S.

Vempala (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 20:1–20:15.

[54] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. 1996.

The Log-Structured Merge-Tree (LSM-Tree). Acta Inf. 33, 4 (1996), 351–385.

http://dblp.uni-trier.de/db/journals/acta/acta33.html#ONeilCGO96

[55] Anna Pagh, Rasmus Pagh, and Milan Ružić. 2011. Linear Probing with 5-Wise

Independence. SIAM Rev. 53, 3 (Aug. 2011), 547–558. https://doi.org/10.1137/

https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/libsupc%2B%2B/hash_bytes.cc
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/libsupc%2B%2B/hash_bytes.cc
https://www.kaggle.com/hacker-news/hacker-news-posts
https://www.kaggle.com/hacker-news/hacker-news-posts
https://doi.org/10.1109/TIT.2016.2620435
https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://github.com/aappleby/smhasher
https://doi.org/10.14778/2732219.2732227
http://www.jstor.org/stable/2683873
http://www.jstor.org/stable/2683873
http://dblp.uni-trier.de/db/conf/sequences/sequences1997.html#Broder97
http://dblp.uni-trier.de/db/conf/sequences/sequences1997.html#Broder97
https://engineering.fb.com/2019/04/25/developer-tools/f14/
https://doi.org/10.4086/toc.2013.v009a030
https://cyan4973.github.io/xxHash/
https://proceedings.neurips.cc/paper/2020/file/86b94dae7c6517ec1ac767fd2c136580-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/86b94dae7c6517ec1ac767fd2c136580-Paper.pdf
https://doi.org/10.1145/3448016.3457273
https://doi.org/10.14778/3389133.3389138
https://doi.org/10.1109/SFCS.1982.39
http://daslab.seas.harvard.edu/EntoryLearnedHashing/EntropyLearnedHashingTechnicalReport.pdf
http://daslab.seas.harvard.edu/EntoryLearnedHashing/EntropyLearnedHashingTechnicalReport.pdf
https://www.youtube.com/watch?v=ncHmEUmJZf4
https://doi.org/10.1145/3341302.3342076
https://doi.org/10.1145/3341302.3342076
https://doi.org/10.1093/bioinformatics/btw397
https://doi.org/10.1093/bioinformatics/btw397
https://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/32/22/3492/19397493/btw397_Sup.pdf
https://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/32/22/3492/19397493/btw397_Sup.pdf
http://arxiv.org/abs/1612.06321
http://dblp.uni-trier.de/db/journals/acta/acta33.html#ONeilCGO96
https://doi.org/10.1137/110827831
https://doi.org/10.1137/110827831

110827831

[56] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo Hashing. J. Algorithms
51, 2 (May 2004), 122–144. https://doi.org/10.1016/j.jalgor.2003.12.002

[57] Mihai Pǎtraşcu and Mikkel Thorup. 2010. On the k-Independence Required

by Linear Probing and Minwise Independence. In Automata, Languages and
Programming. Springer Berlin Heidelberg, Berlin, Heidelberg, 715–726.

[58] Mihai Patrascu and Mikkel Thorup. 2011. The Power of Simple Tabulation

Hashing. In Proceedings of the Forty-Third Annual ACM Symposium on Theory of
Computing (San Jose, California, USA) (STOC ’11). Association for Computing

Machinery, New York, NY, USA, 1–10. https://doi.org/10.1145/1993636.1993638

[59] W. W. Peterson. 1957. Addressing for Random-Access Storage. IBM Journal of
Research and Development 1, 2 (1957), 130–146. https://doi.org/10.1147/rd.12.0130

[60] Geoff Pike and Jyrki Alakuijala. 2011. CityHash.

https://github.com/google/cityhash.

[61] Geoff Pike and Jyrki Alakuijala. 2014. FarmHash.

https://github.com/google/farmhash.

[62] Orestis Polychroniou and Kenneth A. Ross. 2014. A Comprehensive Study of

Main-Memory Partitioning and Its Application to Large-Scale Comparison- and

Radix-Sort. In Proceedings of the 2014 ACM SIGMOD International Conference
on Management of Data (Snowbird, Utah, USA) (SIGMOD ’14). Association for

Computing Machinery, New York, NY, USA, 755–766. https://doi.org/10.1145/

2588555.2610522

[63] M. V. Ramakrishna. 1988. Hashing Practice: Analysis of Hashing and Universal

Hashing. In Proceedings of the 1988 ACM SIGMOD International Conference on
Management of Data (Chicago, Illinois, USA) (SIGMOD ’88). Association for

Computing Machinery, New York, NY, USA, 191–199. https://doi.org/10.1145/

50202.50223

[64] M. V. Ramakrishna. 1989. Practical Performance of Bloom Filters and Parallel

Free-Text Searching. Commun. ACM 32, 10 (Oct. 1989), 1237–1239. https:

//doi.org/10.1145/67933.67941

[65] Raghu Ramakrishnan and Johannes Gehrke. 2002. Database Management Systems
(3 ed.). McGraw-Hill, Inc., USA.

[66] Stefan Richter, Victor Alvarez, and Jens Dittrich. 2015. A Seven-Dimensional

Analysis of Hashing Methods and Its Implications on Query Processing. Proc.
VLDB Endow. 9, 3 (Nov. 2015), 96–107. https://doi.org/10.14778/2850583.2850585

[67] R. Rivest. 1992. RFC1321: The MD5 Message-Digest Algorithm.

[68] Kenneth A. Ross. 2007. Efficient Hash Probes on Modern Processors. In Proceed-
ings of the 23rd International Conference on Data Engineering, ICDE 2007, The
Marmara Hotel, Istanbul, Turkey, April 15-20, 2007, Rada Chirkova, Asuman Dogac,

M. Tamer Özsu, and Timos K. Sellis (Eds.). IEEE Computer Society, 1297–1301.

[69] Utku Sirin and Anastasia Ailamaki. 2020. Micro-Architectural Analysis of OLAP:

Limitations and Opportunities. Proc. VLDB Endow. 13, 6 (2020), 840–853.
[70] Oracle ZFS Steve Tunstall. 2017. DeDupe 2.0. https://blogs.oracle.com/wonders-

of-zfs-storage/dedupe-20-v2. Accessed: 2021-05-23.

[71] Reini Urban. [n.d.]. SMHasher - Reini Urban Fork. https://github.com/rurban/

smhasher. Accessed: 2021-05-23.

[72] Kapil Vaidya, Eric Knorr, Michael Mitzenmacher, and Tim Kraska. 2021. Parti-

tioned Learned Bloom Filters. In International Conference on Learning Representa-
tions. https://openreview.net/forum?id=6BRLOfrMhW

[73] Yi Wang, Diego Barrios Romero, Daniel Lemire, and Li Jin. 2020. Modern Non-

Cryptographic Hash Function and Pseudorandom Generator. (2020).

[74] Jan Wassenberg and Peter Sanders. 2011. Engineering a Multi-Core Radix Sort.

In Proceedings of the 17th International Conference on Parallel Processing - Volume
Part II (Bordeaux, France) (Euro-Par’11). Springer-Verlag, 160–169.

[75] Mark N. Wegman and J.Lawrence Carter. 1981. New hash functions and their use

in authentication and set equality. J. Comput. System Sci. 22, 3 (1981), 265–279.
https://doi.org/10.1016/0022-0000(81)90033-7

[76] Oracle ZFS. 2019. ZFS Deduplication. https://blogs.oracle.com/bonwick/zfs-

deduplication-v2. Accessed: 2021-05-23.

[77] Tianqi Zheng, Zhibin Zhang, and Xueqi Cheng. 2020. SAHA: A String Adaptive

Hash Table for Analytical Databases. Applied Sciences 10, 6 (2020). https:

//doi.org/10.3390/app10061915

[78] Zichen Zhu, Ju Hyoung Mun, Aneesh Raman, and Manos Athanassoulis. 2021.

Reducing Bloom Filter CPU Overhead in LSM-Trees on Modern Storage Devices.

In Proceedings of the 17th International Workshop on Data Management on New
Hardware (DaMoN 2021) (Virtual Event, China) (DAMON’21). Association for

Computing Machinery, New York, NY, USA, Article 1, 10 pages. https://doi.org/

10.1145/3465998.3466002

[79] A. Zobrist. 1990. A New Hashing Method with Application for Game Playing.

ICGA Journal 13 (1990), 69–73.

https://doi.org/10.1137/110827831
https://doi.org/10.1016/j.jalgor.2003.12.002
https://doi.org/10.1145/1993636.1993638
https://doi.org/10.1147/rd.12.0130
https://doi.org/10.1145/2588555.2610522
https://doi.org/10.1145/2588555.2610522
https://doi.org/10.1145/50202.50223
https://doi.org/10.1145/50202.50223
https://doi.org/10.1145/67933.67941
https://doi.org/10.1145/67933.67941
https://doi.org/10.14778/2850583.2850585
https://blogs.oracle.com/wonders-of-zfs-storage/dedupe-20-v2
https://blogs.oracle.com/wonders-of-zfs-storage/dedupe-20-v2
https://github.com/rurban/smhasher
https://github.com/rurban/smhasher
https://openreview.net/forum?id=6BRLOfrMhW
https://doi.org/10.1016/0022-0000(81)90033-7
https://blogs.oracle.com/bonwick/zfs-deduplication-v2
https://blogs.oracle.com/bonwick/zfs-deduplication-v2
https://doi.org/10.3390/app10061915
https://doi.org/10.3390/app10061915
https://doi.org/10.1145/3465998.3466002
https://doi.org/10.1145/3465998.3466002

Appendix: Entropy Learned Hashing
10x Faster Hashing with Controllable Uniformity

BRIAN HENTSCHEL, Harvard University
UTKU SIRIN, Harvard University
STRATOS IDREOS, Harvard University

This document accompanies Entropy-Learned Hashing and covers aspects of the paper which were not covered in
the main body of the paper. This covers proofs regarding Entropy-Learned Hashing and linear probing, discussion
of robustness for Entropy-Learned Hashing data structures, and additional experiments.

Appendix A Proofs for Linear Probing
A.1 Notation & Problem Setup
The notation and problem setup are mostly the same as in the original paper. We give a brief recap of the notation
and problem setup here for convenience.
Hash functions in Entropy-Learned hashing consists of two parts, 𝐿 and 𝐻 . The first part 𝐿 chooses which

locations of an input item 𝑥 to hash and maps a key 𝑥 to any subkey of 𝑥 . The second part is a general hash
function 𝐻 which gets applied to 𝐿(𝑥) so that the full partial key hash 𝐻 ′ = 𝐻 ◦ 𝐿. It is assumed that 𝐻 follows
the model of a perfectly random hash function, so that each unique input is given an independent uniform output
between 0 and𝑚 − 1.

To analyze algorithms which use partial-key hashing, we need to deal with the fact that the keys entered into
𝐻 are no longer unique. Towards this end we introduce notation for the set of keys 𝐾 contained in a hash based
data structure. The multi-set 𝑆 |𝐿 = (𝐾 |𝐿, 𝑧) is made of 𝐾𝐿 , the set of all partial-keys (outputs of 𝐿 applied to keys
in 𝐾), and 𝑧, which maps each key in 𝐾𝐿 to the cardinality of its pre-image in 𝐾 . For instance, if 𝐿 takes the first
two characters of an input and 𝐾 = {dog, dot, cat, fan}, then 𝐾 |𝐿 = {"do", "ca", "fa"}, 𝑧 ("ca") = 1, and 𝑧 ("do") = 2.
We use as shorthand throughout 𝑧𝑥 for 𝑧 (𝑥).

Finally, we assume some familiarity with the linear probing algorithm, wherein collisions are resolved by
checking the next slot in a circular array until an empty one is found. In this document, we resolve collisions by
going to the left, i.e. checking 𝑖 ,𝑖 − 1,𝑖 − 2, . . . rather than 𝑖 ,𝑖 + 1, This is to be consistent with Knuth’s proof
for linear probing given in [3]. A reminder of the rest of the notation can be seen in the table below.

A.2 Linear Probing
As in the main document, we start our proof by going over full-key hashing, then analyze partial-key hashing
with a fixed dataset, and finally cover partial-key hashing with random data. Before starting the proof, we briefly
cover the results. When the multi-set 𝑆 |𝐿 is fixed, the expectation is an expectation over the randomness of the
hash function𝐻 . When it is not fixed, the expectation is taken over both the random multi-set 𝑆 |𝐿 and the random
hash function 𝐻 .

A.2.1 Results For full-key hashing, given any set of 𝑛 keys and a hash table with𝑚 slots, the expected number
of comparisons for querying a key not in the dataset and the average number of comparisons when querying for

Authors’ addresses: Brian Hentschel, Harvard University, bhentschel@g.harvard.edu; Utku Sirin, Harvard University, wilsonqin@seas.harva
rd.edu; Stratos Idreos, Harvard University, stratos@seas.harvard.edu.

2 • Brian Hentschel, Utku Sirin, and Stratos Idreos

Notation Definition
𝑋, 𝑥 keys stored in the filter or hash table
𝑌,𝑦 key which is queried for
𝐻 hash function
𝑚 size of table (in slots)
𝑛 number of keys in table
𝐾 set of keys
𝑆 |𝐿 multi-set of keys conditioned on 𝐿. Equal to (𝐾 |𝐿, 𝑧) where 𝐾 |𝐿 consists of all partial keys, and 𝑧 maps each

key 𝑥 ∈ 𝐾 |𝐿 to the number of times it appears in 𝐾 . 𝑧𝑥 will be used as shorthand for 𝑧 (𝑥) throughout.
𝛼 fill of hash table: 𝑛

𝑚

𝑃 ′ number of comparisons to find non-existing key
𝑃 average # of comparisons to retrieve an existing key

Table 1. Notation used throughout the paper

an existing key are:

E[𝑃 ′] ≤ 1
2
(
1 + 1

(1 − 𝛼)2
)

(1)

E[𝑃] ≤ 1
2
(
1 + 1

1 − 𝛼
)

(2)

Letting 𝑐 =
∑

𝑥 𝑧
2
𝑥 be the number of collisions in 𝑆 |𝐿 and 𝑑 =

∑
𝑥 :𝑧𝑥 ≥2 𝑧𝑥 the number of duplicated keys in 𝑆 |𝐿 ,

the costs for partial-key hashing are

E[𝑃 ′] ≤

1
2
(
1 + 1

(1−𝛼)2 +
∑

𝑥≠𝑦
𝑧
2
𝑥

𝑚 (1−𝛼)2
)

if 𝑧𝑦 = 0
𝑧𝑦

1−𝛼 + 1
(1−𝛼)2 +

∑
𝑥≠𝑦

𝑧
2
𝑥

𝑚 (1−𝛼)2 if 𝑧𝑦 > 0
(3)

E[𝑃] ≤ 𝑛 − 𝑑
2𝑛

+ 1
2
𝑄0 (𝑚,𝑛) +

𝑐

𝑚
𝑄0 (𝑚,𝑛) +

𝑐 + 𝑑
2𝑛

𝑄0 (𝑚,𝑑)

≈ (1
2
+ 𝑐
𝑛
) (1 + 1

1 − 𝛼) (4)

where here𝑦 is the queried for key in 𝑃 ′ and the approximation in (4) uses the assumption that 𝑑 is small compared
to𝑚. For random data from an i.i.d. source with Renyi entropy 𝐻2, these translate to the following bounds:

E[𝑃 ′] ≤ 1
2
(1 + 1

(1 − 𝛼)2) + 𝑛2
−𝐻2 (𝐿 (𝑋)) 3

2(1 − 𝛼)2

E[𝑃] ≤ 1
2
(1 + 1

1 − 𝛼) + 𝑛2
−𝐻2 (𝐿 (𝑋)) (1 + 1

1 − 𝛼)

Comparing Partial-Key Hashing with Full-Key Hashing. The above equations, when fully analyzed, make
a rather intuitive point: when there are only a few duplicates in 𝐾𝐿 so that it closely approximates full-key
hashing, the number of comparisons required by full-key and partial-key hashing are close. The general form of
each equation for partial key hashing is that it is the same as full-key hashing plus a small penalty term. These
penalty terms go to 0 as the keys in partial-key hashing become more distinct.

For all equations, we note the equations above are relatively tight bounds as long as 𝛼 is not close to 1. This is
reasonable to assume as all hash tables keep 𝛼 < 0.9 in practice because of the extremely bad behavior of linear

Appendix: Entropy Learned Hashing
10x Faster Hashing with Controllable Uniformity • 3

probing tables as 𝛼 → 1, wherein they degrade to linear scans. The most common range for 𝛼 is between 0.25
and 0.85, with higher alpha leading to better memory usage but slower query times.

A.2.2 Analysis of Full Key Linear Probing To prove (3) and (4), we start by proving (1) and (2), first proven by
Donald Knuth. Our proof initially follows steps taken in The Art of Computer Programming[3], however we
deviate from the proof given there because that approach does not generalize to partial-key hashing. Additionally,
we believe this proof is simpler to follow than the proof in [3].
CountingHash Sequences. For𝑛 distinct items, we have𝑚𝑛 possible ways to assign them to [𝑚] = {0, . . . ,𝑚−1},
all of which are equally likely by our hashing assumptions. Of all possible hash sequences, we first consider how
many leave position 0 empty in the hash table.

Theorem 1. The number of hash sequences such that 𝑛 items are hashed into [1,𝑚 − 1], and no overflow occurs
so that position 0 is empty is {

(1 − 𝑛
𝑚
) · ℎ(𝑚,𝑛) if 0 ≤ 𝑛 ≤ 𝑚

0 otherwise
(5)

where ℎ(𝑚,𝑛) is the number of ways to hash 𝑛 objects into [0,𝑚 − 1].
This is a slight reformulation of the way it is stated in [3] so that it generalizes to partial-key hashing. To prove

the theorem, note that hash sequences which hash 𝑛 items into [1,𝑚 − 1] and do not overflow into position 0 are
precisely the same as those that leave position 0 empty when hashing into a hash table of size𝑚 and resolving
collisions via linear probing. This probability is 1 − 𝑛

𝑚
by the circular symmetry of linear probing. Thus, for

full-key hashing there are (1 − 𝑛
𝑚
)𝑚𝑛 sequences which leave location 0 empty.

The next theorem gives the probability that a run of occupied slots begins at location 1 in the table and stops
at location 𝑘 .

Theorem 2. Let 𝑔(𝑚,𝑛, 𝑘) be the number of sequences when hashing into a hash table of size𝑚 that leave position
0 empty, positions 1 to 𝑘 − 1 filled, and 𝑘 empty. This is

𝑔(𝑚,𝑛, 𝑘) =
(
𝑛

𝑘 − 1

)
1
𝑘

𝑚 − 𝑛 − 1
𝑚 − 𝑘 ℎ(𝑘, 𝑘 − 1)ℎ(𝑚 − 𝑘, 𝑛 − 𝑘 + 1) (6)

This theorem simply builds off of Theorem 1 as there are
(
𝑛

𝑘−1
)
ways to choose the 𝑘 − 1 elements in the run

starting at 1, and then by Theorem 1 there are 1
𝑘
ℎ(𝑘, 𝑘 − 1) and 𝑚−𝑛−1

𝑚−𝑘 ℎ(𝑚 − 𝑘, 𝑛 − 𝑘 − 1) ways to create the two
subsequences with locations 0, 𝑘 empty for each choice of the 𝑘 − 1 elements.
Analyzing Chain Length.We use the two theorems above to analyze a random variable 𝑇 which represents
the length counting from the empty position which a new item is inserted into to the final occupied position
before the next empty position (going from left to right). The figure below shows an example.

X

Hash location

T

Position occupied
by insertion

If we know the expected value for 𝑇 for a new item to be inserted, we can get its average distance from its
hash location by the uniform randomness of hashing. Namely, for any chain of length 𝑇 , each location in the
chain is equally likely as an initial hash location, so E[𝑃 ′ |𝑇] = 1

𝑇

∑𝑇
𝑖=1 𝑖 =

1
2 +

1
2𝑇 . It follows that

E[𝑃 ′] = E[E[𝑃 ′ |𝑇]] = 1
2
+ 1
2
E[𝑇]

4 • Brian Hentschel, Utku Sirin, and Stratos Idreos

To see how the two theorem above apply to our analysis of 𝑇 , assume that the insertion key hashes to location
𝑎. If the insertion key is hashed into a chain of length 𝑡 , then for some 𝑡 ≥ 1, 0 ≤ 𝑘 ≤ 𝑡 − 1, we have 𝑎 − 𝑘 empty,
𝑎 − 𝑘 + 1, . . . , 𝑎 + (𝑡 − 𝑘 − 1) full, and 𝑎 + (𝑡 − 𝑘) empty. We note by symmetry that the same number of sequences
produce a chain of this nature as which produce a chain such that 0 is empty, 1, . . . , 𝑡 − 1 is full, 𝑡 is empty. Since
we have 𝑡 choices for 𝑘 , it then follows that there are 𝑡 · 𝑔(𝑚,𝑛, 𝑡) hash sequences for which the insertion item is
inserted into a chain of length 𝑡 .
The approach taken in Knuth’s art of computer programming is to analyze 𝐸 [𝑇] = ∑

𝑡 ≥1 𝑡
2𝑔(𝑚,𝑛, 𝑡) directly

by using Abel’s Binomial Theorem, i.e.

(𝑥 + 𝑦)𝑛 =
∑
𝑘

(
𝑛

𝑘

)
𝑥 (𝑥 − 𝑘𝑧)𝑘−1 (𝑦 + 𝑘𝑧)𝑛−𝑘

While correct, this approach feels magical as the use of Abel’s Binomial is unintuitive (at least to the authors).
Additionally, it does not generalize to the case of partial-key hashing, and so we take a different approach.
Analyzing Chain Length By Connecting Chain Length and the Probability of Chain Inclusion. Our
approach to analyze E[𝑇] is to look at the probability that each item is in the same probe chain as the inserted
item. Namely, if we let 𝑥1, . . . , 𝑥𝑛 be the keys inserted into the hash table, then we have that

E[𝑇] = 1 +
𝑛∑
𝑖=𝑗

𝑃 (𝑥 𝑗 ∈ 𝑇)

Here we slightly abuse notation to have 𝑇 both represent the length of the chain on the left and the set of objects
in the chain on the right. We now connect this probability that 𝑥 𝑗 ∈ 𝑇 , which is equal for all 𝑗 , to the expected
chain length conditioned on a single new item 𝑥 being part of the chain 𝑇 .

More concretely, let𝑇𝑖 be the chain length of an inserted item if 𝑖 of the 𝑛 items in the hash table have the same
hash value as the item to be inserted. All other items are distributed uniformly at random and independently of
the hash value of the to be inserted item. The following theorem holds.

Theorem 3. If 𝐶 represents a set of 𝑖 values which are fixed to have the same hash location as the newly inserted
item, then for 𝑥 ∉ 𝐶 , we have

𝑃 (𝑥 ∈ 𝑇𝑖) =
1
𝑚
E[𝑇𝑖+1]

Proof. We first derive the formula for E[𝑇𝑖]. Assume as before that the insertion key hashes to location 𝑎.
If the new item is hashed into a chain of length 𝑡 , then for some 𝑡 ≥ 1, 0 ≤ 𝑘 ≤ 𝑡 − 1, we have 𝑎 − 𝑘 empty,
𝑎 − 𝑘 + 1, . . . , 𝑎 + (𝑡 − 𝑘 − 1) full, and 𝑎 + (𝑡 − 𝑘) empty. Again by symmetry, the number of sequences that
produce a chain of this nature is the same as the number of sequences that produce a chain such that 0 is
empty, 1, . . . , 𝑡 − 1 is full, 𝑡 is empty, and the 𝑖 items hash to location 𝑘 . Let this number be 𝑔(𝑚,𝑛, 𝑡, 𝑖, 𝑘). Then
𝑓 (𝑚,𝑛, 𝑡, 𝑖) = ∑

𝑘≥0 𝑔(𝑚,𝑛, 𝑡, 𝑖, 𝑘) is the total number of sequences such that the new item is hashed into a chain
of length 𝑡 .
The value for 𝑓 (𝑚,𝑛, 𝑡, 𝑖) is calculable directly as this is identical to hashing 𝑡 − 𝑖 − 1 items of multiplicity 1

and 1 value of multiplicity 𝑖 into the first 𝑡 slots keeping slot 0 empty, and hashing 𝑛 − (𝑡 − 1) items into the final
𝑚 − 𝑡 slots. Using theorem 1, there are 1

𝑡
ℎ(𝑡, 𝑡 − 𝑖) ways to do the first and 𝑚−𝑛−1

𝑚−𝑡 ℎ(𝑚 − 𝑡, 𝑛 + 1 − 𝑡) ways to do
the second, and

(
𝑛−𝑖
𝑡−𝑖−1

)
ways to which 𝑡 − 𝑖 − 1 elements from 𝐾 \𝐶 are the elements in the run starting at 1. It

follows that

𝑓 (𝑚,𝑛, 𝑡, 𝑖) =
(
𝑛 − 𝑖

𝑡 − 𝑖 − 1

)
1
𝑡

𝑚 − 𝑛 − 1
𝑚 − 𝑡 ℎ(𝑡, 𝑡 − 𝑖)ℎ(𝑚 − 𝑡, 𝑛 − 𝑡 + 1)

Appendix: Entropy Learned Hashing
10x Faster Hashing with Controllable Uniformity • 5

The expected value of 𝑇𝑖 is then𝑚−(𝑛−𝑖) ∑
𝑡 ≥1 𝑡 · 𝑓 (𝑚,𝑛, 𝑡, 𝑖).

We now calculate the probability that 𝑥 ∉ 𝐶 is in 𝑇𝑖 . To do so, we count the number of chains which contain
𝑥 , and then divide by the total number of possible hash sequences. Using the same logic as before, for a key
hashing to location 𝑎, the number of chains containing 𝑥 is equivalent to the number of chains such that 0
is empty, 1, . . . , 𝑡 − 1 is full and contains 𝑥 , 𝑡 is empty, and 𝑖 items hash to location 𝑘 . For a chain of length 𝑡 ,
this means we have

(
𝑛−𝑖−1
𝑡−𝑖−2

)
choices for the elements in the run between 0 and 𝑡 , and we have 1

𝑡
ℎ(𝑡, 𝑡 − 𝑖) and

𝑚−𝑛−1
𝑚−𝑡 ℎ(𝑚 − 𝑡, 𝑛 − 𝑡 + 1) ways to hash these items to chain 1 and chain 2 respectively such that 0 and 𝑡 are empty.

Summing across all possible chain lengths, the number of chains which contain 𝑥 ∉ 𝐶 is

=
∑
𝑡

(
𝑛 − 𝑖 − 1
𝑡 − 𝑖 − 2

)
1
𝑡

𝑚 − 𝑛 − 1
𝑚 − 𝑡 ℎ(𝑡, 𝑡 − 𝑖)ℎ(𝑚 − 𝑡, 𝑛 − 𝑡 + 1)

=
∑
𝑡

𝑡 𝑓 (𝑚,𝑛, 𝑡, 𝑖 + 1)

where we use that ℎ(𝑡, 𝑡 − 𝑖 − 1) = 𝑡 · ℎ(𝑡, 𝑡 − 𝑖). Dividing by the number of hash sequences,𝑚𝑛−𝑖 =𝑚𝑛−(𝑖+1)𝑚
gives that 𝑃 (𝑥 ∈ 𝑇𝑖) = 1

𝑚
E[𝑇𝑖+1]. □

Finishing the Proof. Using these relationship between E[𝑇𝑖] and 𝑃 (𝑥 ∈ 𝑇𝑖), we have

𝐸 [𝑇] = 1 +
𝑛∑
𝑖=1

𝑃 (𝑥𝑖 ∈ 𝑇0)

= 1 + 𝑛

𝑚
E[𝑇1]

= 1 + 𝑛

𝑚
(2 + 𝑛 − 1

𝑚
E[𝑇2]))

where here we use that E[𝑇𝑖] = (𝑖 + 1) +∑𝑥∉𝐶 𝑃 (𝑥 ∈ 𝑇𝑖). If we continue expanding the values of E[𝑇𝑖], we get that

E[𝑇] = 1 + 2
𝑛

𝑚
+ 3

𝑛2

𝑚2 + · · · + (𝑛 + 1)𝑛!
𝑚𝑛

= 𝑄1 (𝑚,𝑛)

where

𝑄𝑟 (𝑚,𝑛) =
∑
𝑘≥0

(
𝑘 + 𝑟
𝑘

)
𝑛𝑘

𝑚𝑘

It follows that

E[𝑃 ′] = 1
2
+ 1
2
𝑄1 (𝑚,𝑛)

recovering the value proven in [3]. Noting that 𝑛𝑘

𝑚𝑘 ≤ 𝛼𝑘 and using that
∑

𝑘≥0 (𝑘 + 1)𝛼𝑘 = 𝑑/𝑑𝛼 (∑𝑘≥0 𝛼
𝑘) =

(1 − 𝛼)−2 gives the desired bound E[𝑃 ′] ≤ 1
2 (1 + (1 − 𝛼)−2)

Average Cost to Query an existing item. To go from E[𝑃 ′], the cost for a newly inserted key, to E[𝑃], the
average cost to query a key in the table, we average over the cost to insert the first 𝑛 keys. Because the cost of
an unsuccessful search in linear probing is the same as the cost to insert a key, this is the same as averaging

6 • Brian Hentschel, Utku Sirin, and Stratos Idreos

over unsuccessful searches over tables storing 1 through 𝑛 elements. So E[𝑃] = 1
𝑛

∑𝑛
𝑖≥0 E[𝑃 ′

𝑖] where E[𝑃 ′
𝑖] is the

expected cost to insert a key if there are 𝑖 items in the table. Thus

E[𝑃] = 1
2
+ 1
2𝑛

𝑛−1∑
𝑖=0

𝑄1 (𝑚, 𝑖)

=
1
2
+ 1
2𝑛

𝑛−1∑
𝑖=0

∑
𝑘≥0

(𝑘 + 1) 𝑖
𝑘

𝑚𝑘

=
1
2
+ 1
2𝑛

∑
𝑘≥0

𝑛−1∑
𝑖=0

(𝑘 + 1) 𝑖
𝑘

𝑚𝑘

Now we use the rules of "finite calculus", which says that if Δ𝑓 (𝑥) = 𝑓 (𝑥 + 1) − 𝑓 (𝑥) = 𝑔(𝑥), then ∑𝑏
𝑖=𝑎 𝑔(𝑥) =

𝑓 (𝑏 + 1) − 𝑓 (𝑎). Here we have Δ𝑥𝑘 = 𝑘𝑥𝑘−1, so
∑𝑛−1

𝑥=0 𝑘𝑥
𝑘−1 = 𝑛𝑘 . Plugging this in above, we have

E[𝑃] = 1
2
+ 1
2𝑛

∑
𝑘≥0

𝑛𝑘+1

𝑚𝑘

=
1
2
+ 1
2
𝑄0 (𝑚,𝑛 − 1)

Using the same bound of 𝑛𝑘

𝑚𝑘 ≤ 𝛼𝑘 , it follows that 𝐸 [𝑃] ≤ 1
2 (1 +

1
1−𝛼).

A.2.3 Proof of Costs Using Partial-Key Hashing To reason about the costs for partial-key hashing, we need to
show how insertion and probe costs depend on 𝑆 |𝐿 , the multi-set of keys. To clear up notation, we will refer to
all multisets in theorems as 𝐶 , 𝐶 ′, or 𝐶 ′′. For any multiset 𝐶 = (𝐾, 𝑧), we have that |𝐶 | = |𝐾 | is the number of
distinct partial-key elements and | |𝐶 | | = ∑

𝑥 ∈𝐶 𝑧 (𝑥) is the total number of elements in 𝐶 . We additionally extend
our shorthand notation 𝑧𝑥 = 𝑧 (𝑥) to sets, i.e. 𝑧𝐶 =

∑
𝑥 ∈𝐶 𝑧𝑥 = | |𝐶 | |. Additionally, we define 𝐶2+ = 𝑥 : 𝑧𝑥 ≥ 2 to be

the set of keys which are not unique in 𝐶 .
Theorem 1,2 and 3 Restatements. Looking at theorem 1, it’s proof holds for partial-key hashing. Namely, if 𝐶
is a multi-set with | |𝐶 | | = 𝑛 ≤ 𝑚, and 𝐶 is hashed into locations [1,𝑚 − 1], then the number of hash sequences
such that 0 is empty is

(1 − 𝑛

𝑚
)ℎ(𝑚,𝐶)

where ℎ(𝑚,𝐶) is the number of ways to hash the objects into [0,𝑚 − 1]. For a given multiset 𝐶 , we have
ℎ(𝑚,𝐶) =𝑚 |𝐶 | .

To generalize theorem 2, we start by analyzing the form of equation (6) for 𝑔(𝑚,𝑛, 𝑘). The equation consists of
three parts: 1) ways to divide the set of 𝑛 objects into one set with 𝑘 − 1 items and another with 𝑛 − 𝑘 + 1 items, 2)
ways to hash the 𝑘 − 1 and 𝑛 − 𝑘 + 1 items into their arrays of size 𝑘 ,𝑚 − 𝑘 , and 3) the scaling factors that say
only 1

𝑘
,𝑚−𝑛−1
𝑚−𝑘 of those leave slots 0 and k empty. It follows that when hashing a multi-set of items 𝐶 , that

𝑔(𝑚,𝐶, 𝑘) =
∑
𝐶′⊆𝐶

| |𝐶′ | |=𝑘−1

1
𝑘

𝑚 − 𝑛 − 1
𝑚 − 𝑘 ℎ(𝑘,𝐶 ′)ℎ(𝑚 − 𝑘,𝐶 \𝐶 ′)

is the number of hash combinations that lead to a hash table with 0 empty, positions 1 to 𝑘 − 1 filled, and 𝑘 empty.
Theorem 3 also holds for multisets, but we need new notation to be clearer about what items are included in

the new chain. We define 𝑇𝐶′ to be the expected chain length of a new item if all items in the multiset 𝐶 ′ ⊆ 𝐶 are
guaranteed to have the same hash value as the newly inserted item.

Appendix: Entropy Learned Hashing
10x Faster Hashing with Controllable Uniformity • 7

Theorem 4. Let 𝐶 be the multi-set of items being hashed into the hash table and let 𝐶 ′ be a multi-set of items
such that the items in𝐶’ are fixed to have the same hash value as a newly inserted item for the hash table. Let 𝑥 ∉ 𝐶 ′,
and define 𝐶 ′′ = 𝐶 ′ ∪ {(𝑥, 𝑧𝑥)}. Then

𝑃 (𝑥 ∈ 𝑇𝐶′) = 1
𝑚
E[𝑇𝐶′′]

Proof. We start by deriving the equation for E[𝑇𝐶′′]. Using the same reduction as in the proof of Theorem 3,
the number of sequences for which the a new item is hashed into a chain of length 𝑡 , given that the items in 𝐶 ′′

hash to the same location as the new item, is the same as the number of chains with 0 empty, 1, . . . , 𝑡 − 1 full, 𝑡
empty, and for which the items in𝐶 ′′ hash to some location 𝑘 between 0 and 𝑡 − 1. For a fixed chain𝐶∗ ⊂ (𝐶 \𝐶 ′′)
with | |𝐶∗ | | = 𝑡 − 1 − ||𝐶 ′′ | |, the number of ways to hash 𝐶∗ and 𝐶 ′′ into 0, . . . , 𝑡 − 1 with the elements of 𝐶 ′′

fixed to have the same hash location is equivalent to the number of ways to hash a new multi-set consisting of
𝐶∗ ∪ (𝑎, 𝑧𝐶′′) for an arbitrary new element 𝑎. By theorem 1 for multi-sets, it follows that the number of hash
combinations such that𝐶∗ ∪𝐶 ′′ are between 0 and 𝑡 − 1 and location 0 is empty is (1− 𝑡−1

𝑡
)
(
ℎ(𝑡,𝐶∗) · 𝑡

)
. It follows

that 𝑓 (𝑚,𝐶, 𝑡,𝐶 ′′), the number of hash combinations that produce a chain of length 𝑡 , satisfies

𝑓 (𝑚,𝐶, 𝑡,𝐶 ′′) =
∑

𝐶∗⊂(𝐶\𝐶′′)
| |𝐶∗ | |=𝑡−1−| |𝐶′′ | |

𝑚 − 𝑛 − 1
𝑚 − 𝑡 ℎ(𝑡,𝐶∗)ℎ(𝑚 − 𝑡,𝐶 \ (𝐶∗ ∪𝐶 ′′))

There are𝑚 |𝐶\𝐶′′ | possible hash sequences and so it follows that 𝐸 [𝑇𝐶′′] =𝑚−|𝐶\𝐶′′ | ∑
𝑡 ≥1 𝑡 𝑓 (𝑚,𝐶, 𝑡,𝐶 ′′).

We now derive the equation for 𝑃 (𝑥 ∈ 𝑇𝐶′). The same logic again applies, with the exception that now 𝑥 has a
degree of freedom in its hash location. So for a fixed chain𝐶∗ ⊂ (𝐶 \𝐶 ′′) with | |𝐶∗ | | = 𝑡 − 1 − ||𝐶 ′′ | |, the number
of ways to hash 𝐶∗, x, and 𝐶 ′ into 0, . . . , 𝑡 − 1 with the elements of 𝐶 ′ fixed to have the same hash location is
equivalent to the number of ways to hash a new multi-set consisting of 𝐶∗ ∪ {(𝑎, 𝑧𝐶′), (𝑥, 𝑧𝑥)} for an arbitrary
new element 𝑎. Again by theorem 1 for multi-sets, this implies the number of hash cominbations where 𝑥,𝐶 ′,
and 𝐶∗ are hashed between 0 and 𝑡 − 1 with location 0 empty is (1 − 𝑡−1

𝑡
)
(
ℎ(𝑡,𝐶∗) · 𝑡2

)
. It follows that

𝑃 (𝑥 ∈ 𝑇𝐶′) =𝑚−|𝐶\𝐶′ |
∑
𝑡 ≥1

∑
𝐶∗⊂(𝐶\𝐶′′)

| |𝐶∗ | |=𝑡−1−| |𝐶′′ | |

𝑚 − 𝑛 − 1
𝑚 − 𝑡 𝑡 · ℎ(𝑡,𝐶∗)ℎ(𝑚 − 𝑘, 𝑆 |𝐿 \𝐶∗)

=𝑚−1𝑚−|𝐶\𝐶′′ |
∑
𝑡 ≥1

𝑡 · 𝑓 (𝑚,𝐶, 𝑡,𝐶 ′′)

=
1
𝑚
𝐸 [𝑇𝐶′′]

□

Bounds on E[𝑇𝐶′]. Theorem 4 again gives us a bridge between the probability of an item being in the same
chain as a new item and the expected chain length when that item is hashed to the same location as a new item.
We now use Theorem 4 to prove the following bound by induction on the set of unallocated objects, i.e. 𝐶 \𝐶 ′:

E[𝑇𝐶′] ≤ 𝑧𝐶′𝑄0 (𝑚,𝑛 − 𝑧𝐶′) +𝑄1 (𝑚,𝑛 − 𝑧𝐶′) +
∑

𝑥 ∈(𝐶\𝐶′)2+

𝑧
2
𝑥

𝑚
𝑄1 (𝑚,𝑛 − 𝑧𝐶′)

Base case: Our base case is all sets such that 𝐶 ′ = 𝐶 , i.e. all objects in 𝐶 are guaranteed to hash to the same
location as the newly inserted item. The length of 𝑇 is guaranteed to be 𝑧𝐶′ + 1 ≤ 𝑧𝐶′𝑄0 (𝑚, 0) +𝑄1 (𝑚, 0).
Induction Steps: Assume our induction hypothesis holds for all sets𝐶,𝐶 ′ ⊂ 𝐶 with |𝐶 \𝐶 ′ | ≤ 𝑘 . Assume now that
are given sets 𝐶,𝐶 ′ such that |𝐶 \𝐶 ′ | = 𝑘 + 1, and that we wish to calculate 𝐸 [𝑇𝐶′ . As shorthand, let 𝐶− = 𝐶 \𝐶 ′.
Then

8 • Brian Hentschel, Utku Sirin, and Stratos Idreos

E[𝑇𝐶′] ≤ (1 + 𝑧𝐶′) +
∑
𝑥 ∈𝐶−

𝑧𝑥𝑃 (𝑥 ∈ 𝑇𝐶′)

= (1 + 𝑧𝐶′) + 1
𝑚

∑
𝑥 ∈𝐶−

𝑧𝑥𝐸 (𝑇𝐶′∪{(𝑥,𝑧𝑥) })

≤ (1 + 𝑧𝐶′) + 1
𝑚

∑
𝑥 ∈𝐶−

𝑧𝑥
[
(𝑧𝑥 + 𝑧𝐶′)𝑄0 (𝑚,𝑛 − 𝑧𝐶′ − 𝑧𝑥) +𝑄1 (𝑚,𝑛 − 𝑧𝑐′ − 𝑧𝑥) +

∑
𝑦∈𝐶−,𝑦≠𝑥

𝑧
2
𝑦

𝑚
𝑄1 (𝑚,𝑛 − 𝑧𝐶′ − 𝑧𝑥)

]
≤ (1 + 𝑧𝐶′) + 𝑛 − 𝑧𝐶

′

𝑚
𝑧𝐶′𝑄0 (𝑚,𝑛 − 𝑧𝐶′ − 1) +

∑
𝑥 ∈𝐶−

𝑧
2
𝑥 + 𝑧𝑥
𝑚

𝑄0 (𝑚,𝑛 − 𝑧𝐶′ − 1)

+ 𝑛 − 𝑧𝐶
′

𝑚
𝑄1 (𝑚,𝑛 − 𝑧𝐶′ − 1) +

∑
𝑥 ∈𝐶−

𝑧
2
𝑥

𝑚

𝑛 − 𝑧𝐶′

𝑚
𝑄1 (𝑚,𝑛 − 𝑧𝐶′ − 1)

= 𝑧𝐶′ (1 + 𝑛 − 𝑧𝐶
′

𝑚
𝑄0 (𝑚,𝑛 − 𝑧𝐶′ − 1)) (7)

+ 1 + 𝑛 − 𝑧𝐶
′

𝑚
𝑄0 (𝑚,𝑛 − 𝑧𝑐 − 1) + 𝑛 − 𝑧𝐶

′

𝑚
𝑄1 (𝑚,𝑛 − 𝑧𝐶′ − 1) (8)

+
∑
𝑥 ∈𝐶−

2+

𝑧
2
𝑥

𝑚
(𝑄0 (𝑚,𝑛 − 𝑧𝑐 − 1) + 𝑛 − 𝑧𝐶

′

𝑚
𝑄1 (𝑚,𝑛 − 𝑧𝐶′ − 1)) (9)

Now, using the rules 𝑛
𝑚
𝑄1 (𝑚,𝑛 − 1) = 𝑄1 (𝑛,𝑚) − 𝑄0 (𝑛,𝑚) and 𝑛

𝑚
𝑄0 (𝑚,𝑛 − 1) = 𝑄0 (𝑚,𝑛) − 1 we can

reduce equations (7),(8), and (9) respectively to 𝑧𝐶′𝑄0 (𝑚,𝑛 −𝑧𝐶′), 𝑄1 (𝑚,𝑛 −𝑧𝐶′), and∑𝑥 ∈(𝐶\𝐶′)2+
𝑧
2
𝑥

𝑚
𝑄1 (𝑚,𝑛 −𝑧𝐶′)

respectively. This gives the required result on E[𝑇𝐶′].
It follows for a query on a new item 𝑘 such that 𝐿(𝑘) = 𝑦, that it has a bound on its expected chain length of

𝐸 [𝑇] ≤ 𝑧𝑦𝑄0 (𝑚,𝑛 − 𝑧𝑦) +𝑄1 (𝑚,𝑛 − 𝑧𝑦) +
∑

𝑥≠𝑦∈𝐶

𝑧
2
𝑥

𝑚
𝑄1 (𝑚,𝑛 − 𝑧𝑦)

Connecting E[𝑇] to E[𝑃 ′]. Depending on whether 𝑧𝑦 = 0, the connection between chain length and probe
length changes. For items which match no other partial-keys in the dataset, we can use the same uniformity
assumptions as before to recover that E[𝑃 ′] = 1

2 +
1
2 E[𝑇]. For items which match at least one partial-key, this

uniformity assumption does not hold, and indeed items with larger 𝑐𝑦 values are more likely to be hashed towards
the beginning of their chain. Thus, we use that 𝑃 ≤ 𝑇 to say E[𝑃] ≤ E[𝑇], and note this is a loose bound when
𝑧𝑦 is small. The result, overall, is equation 3, restated here for convenience.

E[𝑃 ′] ≤

1
2
(
1 + 1

(1−𝛼)2 +
∑

𝑥≠𝑦
𝑧
2
𝑥

𝑚 (1−𝛼)2
)

if 𝑧𝑦 = 0
𝑧𝑦

1−𝛼 + 1
(1−𝛼)2 +

∑
𝑥≠𝑦

𝑧
2
𝑥

𝑚 (1−𝛼)2 if 𝑧𝑦 > 0

Average query cost for an existing key. The average cost to query a key in linear probing is unaffected by
the order in which keys are inserted. Thus, we may assume any insertion order we desire in order to ease the
analysis of the average number of probes for existing keys.
Because our analysis in the prior section created looser bounds for 𝑧𝑦 > 0, namely in that there was no

uniformity assumption on where items were in a chain, we add all duplicate keys first and then all non-duplicate

Appendix: Entropy Learned Hashing
10x Faster Hashing with Controllable Uniformity • 9

keys after. Expanding this out, we have

E[𝑃] ≤ 1
𝑛

(∑
𝑥 ∈𝐶2+

𝑧
2
𝑥

2
𝑄0 (𝑚,𝑑) +

𝑑−1∑
𝑖=0

[
𝑄1 (𝑚, 𝑖) +

∑
𝑥 ∈𝐶2+

𝑧
2
𝑥

𝑚
𝑄1 (𝑚, 𝑖)

])
+ 1
2𝑛

[𝑛−1∑
𝑖=𝑑

(
1 +𝑄1 (𝑚, 𝑖) +

∑
𝑥 ∈𝐶2+

𝑧
2
𝑥

𝑚
𝑄1 (𝑚, 𝑖)

)]
≤ 𝑛 − 𝑑

2𝑛
+ 1
2
𝑄0 (𝑚,𝑛 − 1) + 𝑐 + 𝑑

2𝑛
𝑄0 (𝑚,𝑑 − 1) + 𝑐

2𝑚
(𝑄0 (𝑚,𝑛 − 1) + 𝑑

𝑛
𝑄0 (𝑚,𝑑 − 1))

≈ 1
2
(1 + 1

1 − 𝛼) +
𝑐

𝑛
+ 𝑐

𝑚

1
1 − 𝛼

≤ (1
2
+ 𝑐
𝑛
) (1 + 1

1 − 𝛼)

Here we use that 𝛼𝑑 = 𝑑
𝑚

≈ 0 so that 1
1−𝛼𝑑 ≈ 1. Because we are interested in the case that duplicate items are rare,

this is a very good approximation.
Random Data. To go from fixed data to random data, we condition via Adam’s law. For querying for a missing
key, we first rewrite the expectation as

E[𝑃 ′ |𝑦, 𝑆 |𝐿] ≤
1
2
+ 1

𝑧𝑦≠0
(
𝑧𝑦

1 − 𝛼 − 1
2
) + (1

2
+ 1
2

1
𝑧𝑦≠0

) 1
(1 − 𝛼)2 + (1

2
+ 1
2

1
𝑧𝑦≠0

)
∑
𝑥

𝑧
2
𝑥

𝑚

1
(1 − 𝛼)2

≤ 1
2
(1 − 1

(1 − 𝛼)2) +
1𝑧𝑦≠0 𝑧𝑦

1 − 𝛼 +
1𝑧𝑦≠0

(1 − 𝛼)2 +
∑
𝑥

𝑧
2
𝑥

𝑚

1
(1 − 𝛼)2

Then using that 𝐸 [1𝑧𝑦≠0] ≤ E[𝑧𝑦] = E[1𝑧𝑦≠0 𝑧𝑦], that E[𝑧𝑦] ≤ 𝑛2−𝐻2 (𝐿 (𝑋)) by the union bound, and that
𝐸 [∑𝑥 ∈𝑆Ł 𝑧

2
𝑥] = 𝑛22−𝐻2 , we have

E[𝑃 ′] ≤ 1
2
(1 + 1

(1 − 𝛼)2) +
𝑛2−𝐻2 (𝐿 (𝑋))

1 − 𝛼 + 𝑛2
−𝐻2𝐿 (𝑋))

2(1 − 𝛼)2 +
∑
𝑥

𝛼𝑛2−𝐻2 (𝐿 (𝑋))

(1 − 𝛼)2

≤ 1
2
(1 + 1

(1 − 𝛼)2) + 𝑛2
−𝐻2 (𝐿 (𝑋)) 3

2(1 − 𝛼)2

More straightforwardly,

E[𝑃] ≤ 1
2
(1 + 1

1 − 𝛼) + 𝑛2
−𝐻2 (𝐿 (𝑋)) (1 + 1

1 − 𝛼)

This concludes the analysis of linear probing, proving the initial equations given in the paper.

Appendix B Robustness of Entropy-Learned Hashing Data Structures
Robustness. For most algorithms and data structures, including those listed here, there is a trade-off between their
robustness and their expected performance. How to choose between the expected performance and robustness is
highly dependent on the application; certain applications might accept 50% better average performance for a 1%
chance at 2X worse performance whereas others may not. For Entropy-Learned Hashing and other techniques
which exist as a base layer of potential use to many applications, the goal is to make this trade-off minimal, so that
large gains in expected performance come at little cost for robustness. For Entropy-Learned Hashing, the amount
of robustness for the hashing task depends on 1) the assumptions of Entropy-Learned Hashing, and 2) the task at
hand. We start by discussing the assumptions of Entropy-Learned Hashing and then discuss Entropy-Learned
Hashing for hash tables, Bloom Filters, and partitioning individually.
Assumptions of Entropy-Learned Hashing. Entropy-Learned Hashing makes weak assumptions, namely
that data which are somewhat random remain somewhat random. Thus, unlike the usual case for learning

10 • Brian Hentschel, Utku Sirin, and Stratos Idreos

Probe

0

100

200

300

400

UUID Wp. Wiki Hn Ggle

Ha
sh

 T
ab

le
 In

se
rt

Ti

m
e

(n
s)

GST wy ELH

0

200

400

600

800

UUID Wp. Wiki Hn Ggle

In-cache In-memory

(a) (b)

Fig. 1. Entropy-Learned Hashing reduces insert times for
hash tables across datasets, and data sizes.

HN
Trained w/ Ggle

HN
Trained w/ HN

HN
Trained w/ UUID

HN
Trained w/ Ggle

HN
Trained w/ HN

HN
Trained w/ UUID

100

200

300

00

30

60

90

Pr
ob

e
Ti

m
e

(n
s)

Pr
ob

e
Ti

m
e

(n
s)

a) b)

Fig. 2. Entropy-Learned Hashing keeps good performance under
some data shifts and is never worse than traditional hashing.

where shifts in data distributions almost always cause degradations in performance, shifts in data distribution
for Entropy-Learned Hashing cause no change in performance as long as data stays random. In particular, if a
distribution 𝐷1 shifts to distribution 𝐷2 this only causes a performance shift if 𝐻2 (𝐿(𝐷2)) << 𝐻2 (𝐿(𝐷1)). Thus
the main robustness of Entropy-Learned Hashing comes from the fact that changes in distribution are unlikely to
degrade performance. Still, we must address the case where 𝐷2 actually becomes predictable on the bytes we
choose to hash. We now cover this for each data structure.
Hash Tables. Entropy-Learned Hashing for hash tables is the most robust. This is for multiple reasons. First,
if collisions are as expected on keys in the dataset, queries for both keys in the data and not in the data return
quickly (see equations (4) and (5) for example). Second, we can monitor collisions during insertions with little
overhead by counting the displacement from the initial hash position. Thus, this together with reason 1 means
we have guaranteed good performance at all times. Third, Entropy-Learned Hashing can rehash if collisions ever
deviate what is expected. The simplest way to do this is to revert to a full-key hash function, although other
approaches such as backup bytes to include are an interesting future direction. Thus performance for hash tables
can be guaranteed to be at least as good as traditional hashing (at the expense of code complexity) while usually
being substantially better.
Bloom Filters. Bloom filters are less robust than hash tables. Their first defense in terms of robustness is the weak
assumptions, namely that different distributions work for Entropy-Learned Hashing as long as the distribution is
still random. Their second defense is that we can check that the data matches the desired distribution, namely
because the # of set bits concentrates sharply around their expected value [1]. We use this fact to estimate the
number of unique items in the filter. If data items are not as expected, or if queries are substantially different
than the inserted items leading to a larger FPR, the filter must be rebuilt.
Partitioning. For partitioning, the cost of overloaded bins depends on the context, but for many contexts, such
as in-memory radix partitioning, this can be solved by dividing the one or two overloaded bins into multiple bins.
This is simple to implement and does not affect in-memory tasks like radix-partitioning much. For more complex
tasks for which partitioning happens across a more expensive medium such as a network, approaches such as
using the least loaded of d-bins would be of use [2].

Appendix C Additional Experiments
This Section covers the additional experiments described in Section 6.6. This includes experiments on 1) the
efficiency of creating Entropy-Learned Hash data structures, 2) probing separate chaining hash tables, 3) experi-
ments showing robustness properties, 4) experiments with dependent accesses (i.e. hash table lookups and Bloom
filter lookups which must run one after the other instead of in parallel), and 5) additional experiments on Bloom
filters showing different false positive rates.
1. Entropy-Learned Hashing Reduces Hash Table Insert Time. Entropy-Learned Hashing works similarly
for inserts as it works for probes with hit rate = 1. Figure 1 presents hash table insert times for the five real-world

Appendix: Entropy Learned Hashing
10x Faster Hashing with Controllable Uniformity • 11

Thpt numbers – with dummy hash – small – new
(1K small dataset, ½ of max_size for large) –
std_table - new

0

100

200

UUID Wp. Wiki Hn Ggle

Ha
sh

 T
ab

le
 P

ro
be

Ti

m
e

(n
s)

Standard wyhash Entropy-Learned Hashing

UUID Wp. Wiki Hn Ggle
0

200

400

600

UUID Wp. Wiki Hn Ggle UUID Wp. Wiki Hn Ggle

In-cache
Hit rate = 1

In-cache
Hit rate = 0 In-memory

Hit rate = 0

In-memory
Hit rate = 1(a) (b) (c) (d)

Fig. 3. Entropy-Learned Hashing reduces the probe time of standard chaining hash tables.

0

50

100

150

UUID Wp. Wiki Hn Ggle

Ha
sh

 T
ab

le
 P

ro
be

Ti

m
e

(n
s)

Google SwissTable wyhash Entropy-Learned Hashing

Latency numbers – with dummy hash – small –
new (1K small dataset, ½ of max_size for large)

UUID Wp. Wiki Hn Ggle
0

50

100

150

200

UUID Wp. Wiki Hn Ggle
0

100

200

300

400

UUID Wp. Wiki Hn Ggle

In-cache
Hit rate = 1

In-cache
Hit rate = 0

In-memory
Hit rate = 0

In-memory
Hit rate = 1(a) (b) (c) (d)

Fig. 4. Entropy-Learned Hashing reduces dependent probe times for hash tables across datasets, data sizes, and hit rates.

datasets we examine. The figure shows that Entropy-Learned hashing provides a 1.16× to 1.3× speedup over its
closest competitor thanks to its reduced hash computation both for in-cache and in-memory data sizes. Thus, the
speedups seen in query performance on Entropy-Learned hash tables carry over to performance on the insertion
of data.
2. Separate Chaining Experiments. To show that Entropy-Learned Hashing works with separate chaining
hash maps as well as linear probing hash maps, we integrate Entropy-Learned Hashing into std::unordered_map.
The results can be seen in Figure 3. The key takeaway is that, as expected, Entropy-Learned Hashing reduces the
probe times across datasets, data sizes, and hit rates, with this improvement being up to 1.72×. Thus Entropy-
Learned Hashing works for separate chaining tables in addition to linear probing tables. The improvement is
slightly lower than what is seen for SwissTable; this is mainly because std::unordered_map is much slower as a
baseline and so portions of the hash table probe that are not the hash function take up more of the computation.
A second change is that std::unordered_map is only a tiny amount faster when querying for non-existent keys
than when querying for existent keys. This is again because unordered_map lacks optimizations present in
SwissTable. Thus, a second takeaway of Figure 3 is that Entropy-Learned Hashing provides larger speedups for
more optimized hash tables.
3. Robustness of Entropy-Learned Hashing. To test the robustness of Entropy-Learned hash tables, we test
the performance of them when their training sets, i.e the set of sampled past queries and data items, does not
match their test distribution of actual inserted and queried items. To test this, we vary the distribution given
as a data sample and then insert and query items from the Hacker News dataset. Figures 2a,b show the results
when using the large data size and querying for missing items (Fig. 2a) and existing items (Fig. 2b). As expected,
when the Hacker News dataset is used to gather data as well as to insert and query items, we see speedups
of 5% to 30%. More importantly, as Figures 2a and 2b show, when using Google URLs as a dataset to analyze
ahead of time, using the Hacker News dataset to insert and query items still produces speedups of 5% to 27%.
This shows the case where the test data is different in distribution but still random enough on the bytes of

12 • Brian Hentschel, Utku Sirin, and Stratos Idreos

Blocked Bloom filter numbers - latency

0

20

40

60

80
UU

ID
W

p.
W

iki Hn Gg
le

UU
ID

W
p.

W
iki Hn Gg
le

Small data Large data

Lo
ok

up
 ti

m
e

(n
s)

xxh3 ELH

0

0.01

0.02

0.03

UU
ID

W
p.

W
iki Hn

Gg
le

UU
ID

W
p.

W
iki Hn

Gg
le

Small data Large data
FP

R
(a) (b)

Fig. 5. Improving Bloom filter lookup time (a) and false
positive rates (b) for small and large data sizes for dependent
lookups.

Bloom filter numbers

0

20

40

60

80

UUID Wp. Wiki Hn Ggle UUID Wp. Wiki Hn Ggle

Small data Large data

Lo
ok

up
 ti

m
e

(n
s)

xxh3 ELH

0

0.01

0.02

0.03

0.04

UUID Wp. Wiki Hn Ggle UUID Wp. Wiki Hn Ggle

Small data Large data

Fa
lse

 p
os

iti
ve

 ra
te

xxh3 ELH

0

20
40
60
80

UU
ID

W
p.

W
iki Hn

Gg
le

UU
ID

W
p.

W
iki Hn

Gg
le

Small data Large data

Lo
ok

up
 ti

m
e

(n
s)

xxh3 ELH

0

0.02

0.04

UU
ID

W
p.

W
iki Hn

Gg
le

UU
ID

W
p.

W
iki Hn

Gg
le

Small data Large data

FP
R

(a) (b)

Fig. 6. Improving regular Bloom filter lookup time (a) and
false positive rates (b) for small and large data sizes.

choice; in this case Entropy-Learned Hashing still provides speedups over full-key hashing. When using the
UUID dataset as a training dataset, the user ids from UUID and posted urls from Hacker News are very different
and Entropy-Learned Hashing defaults to using the full-key hash function as described in Section 2 of the
technical report (and Section 5 of the main paper). Thus, in this case it provides no speedups but does not degrade
performance.
4. Entropy-Learned Hashing Reduces Dependent Probe Times. Entropy-Learned Hashing reduces probe
times for data structures when the probes are dependent (i.e. they cannot be batched). Figure 4 presents hash
table probe times, and shows Entropy-Learned Hashing provides 1.18x to 2.9x speedups across different datasets,
data sizes and hit rates. Figure 5 shows similar results for dependent Bloom filter lookups, where every lookup
requires the result of the preceding lookup to start. The figure shows that Entropy-Learned Hashing significantly
reduces the filter lookup times and provides a 1.16× to 2.5× speedup across datasets and data sizes.

The speedups are consistently lower for dependent lookups than they are for independent lookups. The reason
is that independent lookups benefit from inter-lookup parallelism, as we discussed in Section 6.3. However, we
observe a significant speedup even for dependent lookups. To illustrate, Entropy-Learned Hashing is 1.42× faster
than wyhash for hash table probes on the Google dataset with large data and high hit rate. This is because there are
two types of memory-level parallelism that Entropy-Learned Hashing benefits from: (i) inter-lookup parallelism,
and (ii) intra-lookup parallelism. While independent hash table probes benefit from both inter- and intra-lookup
parallelism, dependent hash table probes benefit from only intra-lookup parallelism. As a result, Entropy-Learned
Hashing improves hash table probe time more when the probes are independent than it improves when the probes
are dependent. To verify our hypothesis, we examined the MLP value for Entropy-Learned Hashing and wyhash
for dependent hash table probes and found the MLP value is 2.0 for Entropy-Learned Hashing compared to 1.6
for wyhash. Thus ELH provides both parallelism benefits and computational benefits and produces consistent
speedups for dependent lookups across small and large data sizes.
5. Experiments with different FPRs for Bloom Filters. The experiments in the main body of the text focused
on throughput optimized filters, in particular using register-blocked Bloom filters from [4]. Figure 6 shows the
performance of Entropy-Learned Hashing on traditional Bloom filters at a lower false positive rate of 1%. The
results are extremely similar to Section 6.4, and so we don’t cover them in detail. Entropy-Learned Hashing again
provides benefits in lookup performance of up to 2.4× at negligible (and tunable) increases to the false positive
rate.
6. Entropy-Learned Hashing scales linearly with the number of threads. Up to now, we have focused
on single-threaded behavior for Entropy-Learned Hashing. In this section, we examine how Entropy-Learned
Hashing behaves as the number of threads is increased. We increase the number of threads concurrently probing

Appendix: Entropy Learned Hashing
10x Faster Hashing with Controllable Uniformity • 13

M-core speedup numbers – large

0

1

2

3

1 2 3 4 5 6 7 8

Sp
ee

du
p

Number of threads

Wikipedia Google

0

0.5

1

1.5

1 2 3 4 5 6 7 8
Number of threads

In-cache
Hit rate = 0(e) In-cache

Hit rate = 1(f)
0

1

2

3

1 2 3 4 5 6 7 8
Number of threads

In-memory
Hit rate = 0(g)

0

1

2

1 2 3 4 5 6 7 8
Number of threads

In-memory
Hit rate = 1(h)

0

200

400

600

1 2 3 4 5 6 7 8Nu
m

be
r o

f p
ro

be
s p

er

se
co

nd
 (i

n
m

ill
io

ns
)

Number of threads

Wikipedia, wyhash Wikipedia, Entropy-Learned Hashing Google, wyhash Google, Entropy-Learned Hashing

0
50

100
150
200

1 2 3 4 5 6 7 8
Number of threads

0

100

200

300

1 2 3 4 5 6 7 8
Number of threads

0

50

100

1 2 3 4 5 6 7 8
Number of threads

In-cache
Hit rate = 1

In-cache
Hit rate = 0

In-memory
Hit rate = 0

In-memory
Hit rate = 1(a) (b) (c) (d)

Fig. 7. Entropy-Learned Hashing scales linearly with the number of cores.

the same table and examine the number of probes per second by all the concurrently running threads. We pin
each thread to a separate physical core without any hyper-thread sharing.

Figure 7 presents the results. The figure shows that both Entropy-Learned Hashing and wyhash scale linearly
with the number of threads. As the number of threads is increased, the delivered throughput is increased in
proportion with the number of threads. As a result, Entropy-Learned Hashing provides constant speedups over
wyhash for all the number of threads.

14 • Brian Hentschel, Utku Sirin, and Stratos Idreos

References
[1] A. Broder, M. Mitzenmacher, and A. B. I. M. Mitzenmacher. Network applications of bloom filters: A survey. In Internet Mathematics,

pages 636–646, 2002.
[2] R. M. Karp, M. Luby, and F. Meyer auf der Heide. Efficient pram simulation on a distributed memory machine. In Proceedings of the

Twenty-Fourth Annual ACM Symposium on Theory of Computing, STOC ’92, page 318–326, New York, NY, USA, 1992. Association for
Computing Machinery.

[3] D. E. Knuth. The Art of Computer Programming, Volume 3: (2nd Ed.) Sorting and Searching. Addison Wesley Longman Publishing Co., Inc.,
USA, 1998.

[4] H. Lang, T. Neumann, A. Kemper, and P. Boncz. Performance-optimal filtering: Bloom overtakes cuckoo at high throughput. Proceedings
of the VLDB Endowment, 12(5):502–515, 2019.

	Abstract
	1 Dataset Specific Hashing
	2 Overview & Modeling
	3 Creating Partial-Key Functions
	4 Connecting Entropy to Data Structure Performance
	4.1 Hash Tables
	4.2 Bloom Filters
	4.3 Partitioning & Load Balancing

	5 Runtime Infrastructure
	6 Experimental Evaluation
	6.1 Setup and Methodology
	6.2 Number of Words vs. Entropy
	6.3 Hash Table Probe Time
	6.4 Bloom Filter Lookup Time & FPR
	6.5 Partitioning Time & Variance
	6.6 Large Key Experiments
	6.7 Training Time
	6.8 Additional Experiments

	7 Related Work
	8 Conclusion & Future Work
	9 Acknowledgements
	References

